
EVERYTHING IS VECCHIA:
UNIFYING LOW-RANK AND SPARSE INVERSE CHOLESKY

APPROXIMATIONS

EAGAN KAMINETZ∗ AND ROBERT J. WEBBER†

Abstract. The partial pivoted Cholesky approximation accurately represents matrices that
are close to being low-rank. Meanwhile, the Vecchia approximation accurately represents matrices
with inverse Cholesky factors that are close to being sparse. What happens if a partial Cholesky
approximation is combined with a Vecchia approximation of the residual? This paper shows how the
sum can be rewritten as a Vecchia approximation of the original matrix with an augmented sparsity
pattern. Thus, the Vecchia approximation is a superset of other factored matrix approximations and
it has broad applicability. The paper analyzes the optimality properties of the Vecchia approximation,
and it tests this approximation on kernel matrices for high-dimensional machine learning applications.

Key words. Vecchia approximation, partial pivoted Cholesky approximation, kernel matrix,
factorized sparse approximate inverse

AMS subject classifications. 65F55, 65C99, 15A23

1. Motivation. The goal of this paper is approximating a large, dense positive-
semidefinite matrix A ∈ Cn×n by looking up and processing individual entries A(i, j).
For example, A might be the kernel matrix for a high-dimensional machine learning
data set [24]. In this context, looking up each entry A(i, j) requires a constant, po-
tentially large number of arithmetic operations. Since a kernel matrix can be very
large (e.g., n ≥ 105), kernel computations require an approximation Â ≈ A that is
generated in linear or sublinear time. A linear-time algorithm runs in O(n2) arith-
metic operations, comparable to the cost of looking at each entry of A once. A
sublinear-time algorithm runs in o(n2) operations while looking at just a fraction of
A’s entries.

Sparse Cholesky approximation is a flexible framework for sublinear- and linear-
time matrix approximation. This framework includes the partial pivoted Cholesky
approximation [6] and the Vecchia approximation [29], which are traditionally re-
garded as accurate approximations for different types of matrices. Partial pivoted
Cholesky provides an accurate approximation when the target matrix is close to be-
ing low-rank [6, Thm. 2.3]. Meanwhile, Vecchia provides an accurate approximation
when the inverse Cholesky factor is close to being sparse; see [23, Sec. B.2] and [20].
This paper unifies the two approaches — it shows how the combination of a partial
Cholesky approximation and a Vecchia approximation of the residual can be rewritten
as a Vecchia approximation with an augmented sparsity pattern.

After positioning the Vecchia approximation as a unifying framework for efficient
positive-semidefinite approximations, this paper asks and partially answers, “In what
way is the Vecchia approximation optimal?” Optimality theory for the Vecchia ap-
proximation was developed in past work [29, 19, 3, 30, 23], but this paper presents a
new extension to positive-semidefinite matrices and new error bounds for linear solves
and determinant calculations; see section 3 for details. Last, this paper evaluates the
Vecchia approximation on kernel matrices for high-dimensional machine learning ap-
plications.

∗University of California San Diego, La Jolla, CA (ekaminetz@ucsd.edu, rwebber@ucsd.edu).

1

mailto:ekaminetz@ucsd.edu
mailto:rwebber@ucsd.edu

2 E. KAMINETZ & R.J. WEBBER

1.1. Notation. Scalars are written in lower case italics, e.g., m,n, r. Vectors
are in lower case boldface, e.g., u,v. Matrices are in boldface capital letters, e.g.,
A,B. Index sets are in sans serif font, e.g., R, S. Following standard conventions,
0 denotes a vector or matrix of all zeros, I is an identity matrix, and ei denotes a
standard basis vector, which is all zeros except for 1 in the ith entry.

We use u(i) to refer to to the ith entry of a vector u, and we use A(i, j) to refer
to the (i, j) entry of a matrix A. Given index sets R,S, we use u(R) to refer to the
subvector (u(i))i∈S , and we use A(R,S) to refer to the submatrix (A(i, j))i∈R, j∈S.
Additionally, A(i, ·) and A(·, i) indicate the ith row and column of A, and we write
ℓ :m to refer to {ℓ, . . . ,m} when indexing vectors or matrices.

The complex conjugate of a scalar u is u. The conjugate transpose of a vector v
or matrix A is v∗ or A∗. The inverse of A is A−1, the conjugate transpose inverse
is A−∗, and the Moore-Penrose pseudoinverse is A+. Given a positive-semidefinite
matrix A ∈ Cn×n, the A-weighted inner product, norm, and distance function are
defined as

⟨u,v⟩A = u∗Av, ∥v∥A = ⟨v,v⟩1/2A , and dA(u,v) = ∥u− v∥A.

In the rank-deficient case, ∥·∥A is not technically a norm. It is a seminorm that defines
an equivalence relation u ∼ v when u− v ∈ null(A). Last, in this paper, the volume
of a matrix A is the product of its nonzero singular values,

vol(A) =
∏

σi(A)>0

σi(A),

which aligns with the determinant if A is strictly positive definite.

1.2. Organization of paper. The rest of the paper is organized as follows.
Section 2 provides background and establishes the main theoretical result. Section 3
derives optimality theory for the Vecchia approximation. Section 4 introduces algo-
rithmic optimization strategies for the Vecchia approximation, and section 5 presents
numerical experiments.

2. Background and contributions. This section introduces the framework
of sparse Cholesky approximation (subsection 2.1). Then it proves the paper’s main
theoretical result (subsection 2.2) and discusses broader implications (subsection 2.3).

2.1. Factored approximations based on the Cholesky decomposition.
Any positive-semidefinite matrix can be exactly represented through a Cholesky or
inverse Cholesky decomposition.

Definition 2.1 (Cholesky and inverse Cholesky decompositions). The pivoted
Cholesky and pivoted inverse Cholesky decompositions for a positive-semidefinite ma-
trix A ∈ Cn×n are defined as

(2.1) A = PLDL∗P ∗ and A = PC−1DC−∗P ∗.

Here, P ∈ {0, 1}n×n is a permutation matrix, D ∈ Rn×n
+ is a nonnegative-valued

diagonal matrix, and L,C ∈ Cn×n are lower triangular matrices with ones on the
diagonal.

Cholesky and inverse Cholesky decompositions exist for any positive-semidefinite ma-
trix A and any permutation matrix P . See Figure 1 for illustrations. The Cholesky

EVERYTHING IS VECCHIA 3

A

=

P L D L∗ P ∗

A

=

P C

−1

D C∗

−1

P ∗

Fig. 1. Cholesky and inverse Cholesky decompositions of a dense matrix A. Factors P ,L,D
or P ,C,D are stored, and inverses C−1,C−∗ are accessed implicitly. Filled boxes show entries
that are allowed to be nonzero.

decomposition can be manipulated into inverse Cholesky form and vice versa through
a matrix inversion C = L−1.

The Cholesky and inverse Cholesky decompositions facilitate fast matrix compu-
tations. Once the factors P ,D,L or P ,D,C have been generated and stored, the
matrix A does not need to be accessed again. Rather, each matrix–vector product
v 7→ Av can be computed by sequentially multiplying the vector with each matrix in
the factorization (2.1). The multiplications with C−1 or C−∗ can be carried out via
efficient triangular solves, without computing the inverse explicitly. Any consistent
linear system Ax = b can be solved by multiplying the output vector b by a sequence
of matrices,

x = PL−∗D+L−1P ∗b or x = PC∗D+CP ∗b.

Thus, the cost of a linear solve is O(n2) arithmetic operations.
Motivated by the Cholesky and inverse Cholesky decompositions, we can generate

a sparse Cholesky or sparse inverse Cholesky approximation

(2.2) Â = PL̂D̂L̂∗P ∗ or Â = PĈ−1D̂Ĉ−∗P ∗.

Here P is a permutation matrix, D̂ is a nonnegative-valued diagonal matrix, and L̂ or
Ĉ is a sparse lower triangular matrix with ones on the diagonal. The sparsity pattern
{Si}ni=1 is a collection of index sets Si ⊆ {1, . . . , i − 1} describing which off-diagonal

entries of L̂ or Ĉ are allowed to be nonzero.
The imposition of sparsity leads to three benefits. First, matrix–vector products

and linear solves can be computed in O(ns) arithmetic operations, where s is an
upper bound on the cardinality of the sparsity pattern: |Si| ≤ s for each i = 1, . . . , n.
Second, the sparse approximation factors can be stored in O(sn) memory. Third, in

many cases generating the approximation Â is relatively cheap, as it only requires
examining O(sn) or O(s2n) entries of A.

Subsections 2.1.1 and 2.1.2 describe two specific examples of sparse Cholesky
approximations that can be generated in sublinear or linear time.

2.1.1. Partial pivoted Cholesky. The partial pivoted Cholesky approximation
is a common rank-revealing factorization for positive-semidefinite matrices [13]. This
approximation is generated from r selected columns of the matrix A, where r is a

4 E. KAMINETZ & R.J. WEBBER

A

→

P L̂ D̂ L̂∗ P ∗

Fig. 2. Partial pivoted Cholesky accesses the gray-colored entries of A. The approximation
rank is r = 2 and the columns u1 = 3 and u2 = 1 are perfectly replicated.

Algorithm 2.1 Partial pivoted Cholesky approximation

Require: Positive-semidefinite matrix A ∈ Cn×n with entry-wise access; permuta-
tion matrix P ∈ {0, 1}n×n; approximation rank r

Ensure: Sparse Cholesky approximation Â = PL̂D̂L̂∗P ∗ in factored form
Initialize sparse matrices F̂ = P and D̂ = 0 ∈ Cn×n ▷ F̂ = PL̂
for i = 1, . . . , r do

Identify pivot ui ∈ {1, . . . , n} with P (ui, i) = 1

v ← A(·, ui)− F̂ D̂F̂ (ui, ·)∗
if v(ui) > 0 then

F̂ (·, i)← v/v(ui)

D̂(i, i)← v(ui)
end if

end for
L̂ = P ∗F̂

rank parameter chosen by the user. The approximation exactly replicates the selected
columns. See the following definition and see Figure 2 for an illustration.

Definition 2.2 (Partial pivoted Cholesky). Given a positive-semidefinite ma-
trix A ∈ Cn×n, the partial pivoted Cholesky approximation with permutation P and
approximation rank r is a sparse Cholesky approximation Â = PL̂D̂L̂∗P ∗ where
each row L̂(i, ·) has sparsity pattern Si = {1, . . . , r} ∩ {1, . . . i− 1} and where{

(L̂D̂L̂∗)(i, j) = (P ∗AP)(i, j), min{i, j} ≤ r,

D̂(i, i) = 0, r + 1 ≤ i ≤ n.

In this definition, the first r rows and columns of L̂D̂L̂∗ match the first r rows and
columns of the permuted matrix P ∗AP . The last n− r columns of L̂ and D̂ can be
trivial, containing just zeros and ones.

Algorithm 2.1 generates a partial Cholesky approximation in O(r2n) arithmetic
operations. The algorithm processes the columns ofA identified by the first r “pivots”
u1, . . . , ur, which are defined by entries P (ui, i) = 1 in the permutation matrix. The
O(r2n) cost arises because the ith step forms linear combinations of the first i selected
columns.

A long line of research has investigated optimal pivot selection for the partial
pivoted Cholesky approximation. “Randomly pivoted Cholesky” is a randomized
selection rule that guarantees near-optimal approximation error in the expected trace
norm [6], and other common pivot selection rules are based on greedy selection [13]
or farthest point sampling [15]. See subsection 4.1 for more analysis and discussion.

EVERYTHING IS VECCHIA 5

A

→

P Ĉ

−1

D̂ Ĉ∗

−1

P ∗

Fig. 3. Vecchia approximation accesses the gray entries in A. The pivots are u1 = 3, u2 = 1,
u3 = 4, u4 = 2, and the sparsity pattern is S1 = ∅, S2 = ∅, S3 = {2}, S4 = {1, 3}.

Algorithm 2.2 Conventional Vecchia algorithm

Require: Positive-semidefinite matrix A ∈ Cn×n with entry-wise access; permuta-
tion matrix P ∈ {0, 1}n×n; sparsity pattern {Si}ni=1

Ensure: Vecchia approximation Â = PĈ−1D̂Ĉ−∗P ∗ in factored form
Initialize sparse matrices Ĉ = I ∈ Cn×n and D̂ = 0 ∈ Cn×n

for i = 1, . . . , n do ▷ Can be executed in parallel[
M v
v∗ α

]
←
[
P (·,Si) P (·, i)

]∗
A
[
P (·,Si) P (·, i)

]
Solve positive-semidefinite system Mx = −v
Ĉ(i,Si)← x∗

D̂(i, i)← α+ x∗v
end for

2.1.2. Vecchia approximation. The Vecchia approximation [29] is a common
approximation of covariance matrices of Gaussian processes. See below for a mathe-
matical definition, and see Figure 3 for an illustration.

Definition 2.3 (Vecchia approximation). Given a positive-semidefinite ma-
trix A ∈ Cn×n, the Vecchia approximation with permutation P and sparsity pattern
{Si}ni=1 is a sparse inverse Cholesky approximation Â = PĈ−1D̂Ĉ−∗P ∗ where each

row Ĉ(i, :) has sparsity pattern Si and it satisfies

(2.3)

{
(ĈÃ)(i,Si) = 0,

(ĈÃ)(i, i) = D̂(i, i),
for Ã = P ∗AP .

In this definition, the Vecchia approximation is based on a sequence of n linear solves
that determine each row vector Ĉ(i,Si) and associated scalar D̂(i, i). The Vecchia
approximation does not necessarily reproduce the the entries of A that were examined
during the algorithm, but it guarantees a different type of approximation quality
framed in terms of the Kaporin condition number; see section 3.

Algorithm 2.2 presents a conventional Vecchia implementation that evaluates each
linear system separately, creating opportunities for parallelism. The total cost of the
Vecchia construction is O(s3n) arithmetic operations, where s is an upper bound on
the sparsity: |Si| ≤ s for i = 1, . . . , n. Yet speedups may be possible by solving the
linear systems in a different way — this paper investigates a Vecchia construction that
has a smaller cost of O(s2n) arithmetic operations when the sparsity pattern takes a
particular structured form; see subsection 2.2.

The design choices in the Vecchia approximation are the permutation matrix P
and the sparsity pattern {Si}ni=1. Historically, researchers chose the sparsity pattern
using nearest neighbors in a problem-specific metric [25], and they generated the

6 E. KAMINETZ & R.J. WEBBER

permutation matrix by recursively choosing the farthest-away index in the same metric
[16]. More recently, Huan et al. [18] proposed optimizing each index set Si using a
greedy heuristic that has been studied in the sparse approximation literature [27].

2.2. Main theoretical result. This paper analyzes a hybrid approximation
that combines the partial pivoted Cholesky and Vecchia approximations [31, 5]. We
establish the following main result.

Theorem 2.4 (Partial Cholesky + Vecchia = Vecchia). Given a target positive-
semidefinite matrix A ∈ Cn×n, consider the following two-part approximation.

1. Generate a partial Cholesky approximation of A with permutation P and
approximation rank r. Call it Âpart.

2. Generate a Vecchia approximation of the residual R = A − Âpart with per-

mutation P and sparsity pattern {Qi}ni=1. Call it Âres.

Then Âpart+Âres can be rewritten as a Vecchia approximation of A with permutation
P and an augmented sparsity pattern Si =

(
{1, . . . , r} ∪ Qi

)
∩ {1, . . . , i− 1}.

Proof. Introduce the permuted matrices Ã = P ∗AP , R̃ = P ∗RP ,

Ãpart = P ∗ÂpartP =

[
L̂11

L̂21 I

] [
D̂11

0

] [
L̂11

L̂21 I

]∗
, and

Ãres = P ∗ÂresP =

[
I

0 Ĉ22

]−1 [
0

D̂22

] [
I

0 Ĉ22

]−∗

where Ãpart and Ãres are partitioned into the first r and last n − r entries. We can
add the approximations to produce a sparse inverse Cholesky approximation

Â = Âpart + Âres = PĈ−1D̂Ĉ−∗P ∗,

where

Ĉ =

[
L̂−1

11

−Ĉ22L̂21L̂
−1
11 Ĉ22

]
and D̂ =

[
D̂11

D̂22

]
.

By inspection, Â is a sparse Cholesky approximation with permutation P and sparsity
pattern {Si}ni=1. See Figure 4 for an illustration. To show it is a Vecchia approxima-
tion, we need to verify the following equalities for i = 1, . . . , n:

(2.4) (ĈÃ)(i,Qi) = 0 and (ĈÃ)(i, i) = D̂(i, i).

We will do this separately for i ≤ r and i ≥ r + 1.
First consider i ≤ r. Since Ã and Ãpart share the same first r rows, we can write

(ĈÃ)(i, ·) = (ĈÃpart)(i, ·)

= (L̂−1
11 L̂11D̂11)(i, ·)

[
L̂∗

11 L̂∗
21

]
= D̂11(i, i)

[
L̂11(·, i)∗ L̂21(·, i)∗

]
.

Since L̂11 is lower triangular with ones on the diagonal, conclude that (ĈÃ)(i, ·) is
a row vector with the first i − 1 entries equal to zero and the ith entry equal to
D̂(i, i) = D̂11(i, i), confirming (2.4).

EVERYTHING IS VECCHIA 7

A

→

P L̂part D̂part L̂∗
part P ∗

R

→

P Ĉres

−1

D̂res Ĉ∗
res

−1

P ∗

Hybrid →

P Ĉ

−1

D̂ Ĉ∗

−1

P ∗

Fig. 4. First row: partial Cholesky accesses the gray entries of A to generate an approximation
Âpart = PL̂partD̂partL̂∗

partP
∗. Second row: Vecchia accesses the gray entries of R = A − Âpart

to generate an approximation Âres = PĈ−1
res D̂resĈ

−∗
resP

∗. Third row: partial Cholesky + Vecchia
yields an improved approximation Â = PĈ−1D̂Ĉ−∗P ∗.

Next consider i ≥ r+1. We use the fact that R̃ is all zeros except for the bottom
right (n− r)× (n− r) submatrix, which we call R̃22. Therefore,

(ĈÃ)(i, ·) = Ĉ(i, ·)(Ãpart + R̃)

= Ĉ22(i− r, ·)
[
−L̂21L̂

−1
11 I

]([L̂11

L̂21

]
D̂11

[
L̂∗

11L̂
∗
21

]
+

[
0 0

0 R̃22

])
= Ĉ22(i− r, ·)

[
0 R̃22

]
=
[
0 Ĉ22

]
(i, ·)R̃.

Since
[
0 Ĉ22

]
(i, ·) is a row vector generated by a Vecchia approximation of R, we

confirm the stated equalities in (2.4) and complete the proof.

2.3. Implications. Theorem 2.4 demonstrates that the partial Cholesky + Vec-
chia approach which appeared in the previous papers [31, 5] is secretly constructing
a Vecchia approximation with the first r indices included in the sparsity pattern. We
list two significant implications.

First, the partial Cholesky + Vecchia approach is computationally efficient. When
q ≥ 1 is an upper bound on the sparsity level in the residual component: |Qi| ≤ q
for i = 1, . . . , n, the construction cost is O((r2 + rq2 + q3)n) arithmetic operations, If
q = O(r1/2), the construction cost is O((r+q)2n) operations, which is smaller than the
conventional Vecchia construction cost of O((r+q)3n) operations using Algorithm 2.2.

Second, the partial Cholesky + Vecchia approach can be very accurate. In the
simplest case, we set the residual component to have sparsity Qi = ∅ for i = 1, . . . , n,

8 E. KAMINETZ & R.J. WEBBER

leading to a “partial Cholesky + diagonal” approximation:

Â = Âpart + Âres = Âpart + diag(A− Âpart).

In contrast, a previous algorithm for refining a partial Cholesky approximation added
a multiple of the identity to the nullspace of Âpart [11]. The numerical experiments in
section 5 show that partial Cholesky + diagonal leads to 5× faster conjugate gradient
convergence for a poorly conditioned target matrix.

Going beyond the minimal sparsity pattern, we also consider a small, carefully
chosen sparsity pattern {Qi}ni=1 for the residual component. Specifically, we investi-
gate a two-part algorithm called “randomly pivoted Cholesky + Vecchia” (RPC+V).

1. Apply randomly pivoted Cholesky [6] to generate a rank-r approximation of
a n× n positive-semidefinite matrix.

2. Generate a Vecchia approximation of the residual matrix, where each com-
ponent of the sparsity pattern comes from a greedy optimization [18] with c
candidate points and s selected nonzero entries.

To ensure a linear construction cost, we use the parameter settings r = O(n1/2),
c = O(n1/4), and s = O(n1/4). Numerical experiments in section 5 show that RPC+V
leads to 1.5× faster conjugate gradient convergence and 10× more accurate log de-
terminant estimation that randomly pivoted Cholesky + diagonal.

In summary, the paper’s main contribution is a recognition and theoretical jus-
tification that the Vecchia approximation is a superset of other factored matrix ap-
proximations. This perspective leads to higher accuracy Vecchia approximations that
are also generated more quickly.

3. Kaporin optimality theory and applications. In this section, we ask and
partially answer, “In what way is the Vecchia approximation optimal?”

Vecchia optimality theory was previously developed in the papers [29, 19, 3, 30,
23]. Here, we review this optimality theory and push it in new directions. Our
analysis is based on the following Kaporin condition number [19, 3], which measures
the accuracy of a matrix approximation.

Definition 3.1 (Kaporin condition number). For any positive-semidefinite ma-

trix A ∈ Cn×n and positive-semidefinite approximation Â ∈ Cn×n, the Kaporin con-
dition number is

κKap =

(
1
r tr(AÂ+)

)r
vol(AÂ+)

, where r = rank(A),

if A and Â share the same range. The Kaporin condition number is κKap =∞ if A

and Â have different ranges.

The Kaporin condition number is the average positive eigenvalue of AÂ+ raised
to the rank(A) power, divided by the product of the positive eigenvalues of AÂ+. By
the arithmetic-geometric mean inequality, the Kaporin condition number is bounded
from below by one. Equality holds if and only if all the positive eigenvalues are equal.

Kaporin [19, App. A.3] proved that the Vecchia approximation optimizes κKap

for strictly positive-definite A subject to any given sparsity pattern. Here we extend
this result to any positive-semidefinite A. The proof is presented in Appendix A.

Theorem 3.2 (Optimality of Vecchia). For any positive-semidefinite matrix

A ∈ Cn×n, the Vecchia approximation Â = PĈ−1D̂Ĉ−∗P ∗ is the inverse Cholesky

EVERYTHING IS VECCHIA 9

approximation with permutation P and sparsity pattern {Si}ni=1 that achieves the

smallest possible Kaporin condition number. When Â and A have the same range,
the Kaporin condition number is

(3.1) κKap =
∏

dÃ(ei,span{ej}j<i)>0

dÃ
(
ei, span{ej}j∈Si

)2
dÃ
(
ei, span{ej}j<i

)2 ,

where Ã = P ∗AP is the permuted A matrix.

Several points are worth mentioning. First, the range of the Vecchia approxi-
mation always contains the range of the target matrix, range(A) ⊆ range(Â). The
ranges are the same if and only if the sparsity set is sufficiently large. Specifically,
when there are “bad” indices i for which

dÃ(ei, span{ej}j<i) = 0,

the sparsity component Si must be large enough that

dÃ(ei, span{ej}j∈Si
) = 0.

Otherwise, the Kaporin condition number is infinite and there is no sparse Cholesky
approximation with the same range as A.

Second, there is a way to rewrite the Kaporin condition number (3.1) using an
inverse Cholesky decomposition A = PC−1DC−∗P ∗.

κKap =
vol(Â)

vol(A)
=

vol(D̂)

vol(D)
=

∏
D(i,i)>0

D̂(i, i)

D(i, i)
.

The entries D̂(i, i) and D(i, i) are encoding the Ã-weighted distances.{
D̂(i, i) = dÃ(ei, span{ej}j∈Si),

D(i, i) = dÃ(ei, span{ej}j<i).

However, the expressions using Ã-weighted distances are more intuitive, and they
motivate the Vecchia optimization strategies that will be pursued in section 4.

Third, the Kaporin condition number optimality is useful and important, because
it controls the error of several linear algebra calculations, especially those involving
determinants. For a list of Kaporin condition number bounds, see Table 1. The
rest of the section will introduce these bounds in more detail and explain how to
use a factored matrix approximation like a Vecchia approximation to speed up linear
algebra.

3.1. Direct linear system solves. In order to solve a linear system Ax = b or
a more general linear least-squares problem minx∥Ax − b∥2, we can make an initial
guess x0 and then refine our guess by calculating

x̂ = x0 + Â+[b−Ax0].

This calculation is very fast. We do not even need to examine the entries ofA once; we
only need to perform a linear solve with a factored approximation Â. The following
proposition bounds the error of the resulting direct solve. To our knowledge, the proof
is new, and it appears in Appendix B.1.

10 E. KAMINETZ & R.J. WEBBER

Method Error bound Reference

Linear system,
direct solver

∥x̂− x⋆∥2A
∥x0 − x⋆∥2A

≤ 2 rank(A) log(κKap) Proposition 3.3

Linear system,
iterative solver

∥xt − x⋆∥2A
∥x0 − x⋆∥2A

≤
[
3 log(κKap)

t

]t
[3], Proposition 3.4

Determinant,
direct solver log

(
det Â

detA

)
= log(κKap)

Proposition 3.5

Determinant,
iterative solver E

∣∣∣∣log(est det Â

detA

)∣∣∣∣2 ≤ 4 log(κKap)

t
Proposition 3.6

Table 1
Summary of error bounds for direct and iterative solvers in terms of the Kaporin condition

number κKap. The direct solver bounds require the normalization tr
(
AÂ+

)
= rank(A) which is

automatically satisfied for the Vecchia approximation when κKap < ∞. The determinant bounds

require that A and Â are strictly positive definite.

Proposition 3.3 (Approximate direct solver for linear systems). If Â is nor-

malized so that tr
(
AÂ+

)
= rank(A), the approximate direct solver satisfies

∥x̂− x⋆∥2A
∥x0 − x⋆∥2A

≤ 2 rank(A) log(κKap).

Here, x⋆ = A+b is the minimum–norm solution to minx∥Ax− b∥2.

The Vecchia approximation uses the normalization tr
(
AÂ+

)
= rank(A), so the

guarantees in Proposition 3.3 are valid. Yet the guarantees in Proposition 3.3 are
not very strong unless the Kaporin condition number is extremely small, log(κKap) <
1/ rank(A).

3.2. Iterative linear system solves. If the approximate direct solver fails to
deliver an accurate solution, we can instead use the more expensive preconditioned
conjugate gradient algorithm [14, Sec. 11.5] Starting with an initial guess x0, PCG

calculates the residual r0 = b −Ax0 and the search direction d1 = Â+r0. At each
step t = 1, 2, . . ., PCG updates the iterate and residual according to{

xt = xt−1 + αtdt,

rt = rt−1 − αtAdt.

The step size and search direction are updated according to

αt =
r∗t−1Â

+rt−1

d∗
iAdi

and dt+1 = Â+rt +
r∗t Â

+rt

r∗t−1Â
+rt−1

dt.

We can run PCG for any number of iterations, producing better and better estimates
of x⋆ = A+b with each iteration. PCG requires just one multiplication with A and
one linear solve with Â per iteration.

Axelsson and Kaporin [3, Thm. 4.3] bounded the error of PCG in terms of κKap

assuming an even number of iterations t ≥ 0, and Appendix B.2 extends their proof
to handle any even or odd number of iterations t ≥ 0.

EVERYTHING IS VECCHIA 11

Proposition 3.4 (Convergence of PCG [3]). At each iteration t ≥ 0, the iterates
produced by preconditioned conjugate gradient satisfy

(3.2)
∥xt − x⋆∥2A
∥x0 − x⋆∥2A

≤
[
3 log(κKap)

t

]t
.

Here, x⋆ = A+b is the minimum–norm solution to minx∥Ax− b∥2.
Proposition 3.4 guarantees superlinear convergence, which is even stronger than

the standard conjugate gradient linear convergence bounds (e.g., [14, Eq. 11.3.27]).
Yet in large-scale applications, the superlinear convergence is mainly observed in
the latter iterations when PCG has already achieved high accuracy [3]. As such,
Proposition 3.4 provides only partial evidence that optimizing the Kaporin condition
number is a good idea for solving linear systems.

3.3. Direct determinant calculation. When A and Â are strictly positive
definite, we can use det(Â) as an estimator for det(A). This computation is very fast

for the Vecchia approximation Â = PĈ−1D̂Ĉ−∗P ∗, because

det(Â) = det(D̂) =

n∏
i=1

D̂(i, i).

The next proposition exactly describes the error in the determinant estimation.

Proposition 3.5 (Approximate direct solver for determinants). If A and Â are

strictly positive definite and Â is normalized so that tr
(
AÂ−1

)
= n, then

log

(
det Â

detA

)
= log(κKap).

Proof. We rewrite the Kaporin condition number as

κKap =

(
1
n tr(AÂ−1)

)n
det(AÂ−1)

=
1

det(AÂ−1)
=

det(Â)

det(A)
,

using the trace normalization.

The Vecchia approximation uses the normalization tr
(
AÂ+

)
= n, so Proposi-

tion 3.5 shows that the Vecchia determinant upper bounds the true determinant of
A. Note, however, the Vecchia approximation does not always provide the sharpest
upper bound on the determinant of A given the revealed entries: this is given by the
solution to the maximum entropy problem; see [7, pg. 161].

3.4. Iterative determinant calculation. When the approximation detA ≈
det Â is not sufficiently accurate, we can refine the approximation with a multiplicative
correction term. To that end, we rewrite

(3.3) log

(
detA

det Â

)
= log

(
det
(
Â−1/2AÂ−1/2

))
= tr

(
log
(
Â−1/2AÂ−1/2

))
.

Here, the matrix logarithm is defined by taking the logarithm of a matrix’s eigenvalues.
To approximate the error term (3.3), we sample independent length-

√
n vectors with

uniformly random directions, z1, . . . ,zm, and form a stochastic trace estimator [28]:

st =
1

t

t∑
i=1

z∗
i log

(
Â−1/2AÂ−1/2

)
zi.

12 E. KAMINETZ & R.J. WEBBER

This estimator is unbiased and converges as t→∞.
The next proposition bounds the mean square error of the stochastic determinant

estimate. The proof is in Appendix B.3 and is apparently new.

Proposition 3.6 (Stochastic determinant estimation). If A and Â are strictly
positive definite n× n matrices with log(κKap) ≤ n and the matrix logarithm is com-
puted exactly, the iterates produced by stochastic determinant estimation satisfy

(3.4) E
∣∣∣∣log(est det Â

detA

)∣∣∣∣2 ≤ 4 log(κKap)

t
.

Proposition 3.6 shows that the stochastic determinant estimator achieves a better
mean square error than the direct estimator as soon as the number of iterations
is t ≥ 4/ log(κKap). As the one limitation, we cannot really compute the matrix

logarithm exactly. In practice, we approximate each term log
(
Â−1/2AÂ−1/2

)
zi by

building a Krylov subspace

Kq(M , zi) = span{zi,Mzi, . . . ,M
qzi} for M = Â−1/2AÂ−1/2

and applying an explicit polynomial approximation [26] or an implicit Krylov–Ritz
approximation [12] of the matrix logarithm. Each Krylov subspace calculation requires
q matrix multiplications, and we use q = 100 in the section 5 experiments.

4. Optimization strategies. This section explores the following open question.

Question 4.1 (Optimal Vecchia approximation). What permutation P and spar-
sity pattern {Si}ni=1 with bounded cardinality |Si| ≤ s lead to a Vecchia approximation
with the lowest possible Kaporin condition number (3.1)?

This question is NP-hard to resolve exactly. Nonetheless, we can suggest several
approximation schemes.

4.1. Partial Cholesky + diagonal. First we consider the simpler problem of
generating an optimal partial Cholesky + diagonal approximation (subsection 2.3).
When the pivot set is R = {u1, . . . , ur}, the condition number can be rewritten as

(4.1) κKap =
∏

dA(ei,span{ej}j∈R)>0

dA
(
ei, span{ej}j∈R

)2
dA
(
ei, span

(
{ej}j<i ∪ {ej}j∈R

)2 .
The Kaporin condition number (4.1) only depends on the pivot set R, so we write
κKap = κKap(R). Below we introduce several strategies to find the best pivot set.
Only one of these strategies, called “farthest point sampling”, has been considered in
the recent literature on Vecchia approximation [23, 31, 5].

4.1.1. Adaptive search. The adaptive search algorithm starts with an empty
set R = ∅ and then adds one pivot at a time by a rule that changes (“adapts”) based on
the previous selections. At each stage, this algorithm tries all the pivots and chooses
the pivot causing the greatest decrease in the condition number.

R← R ∪ {i}, where i ∈ argmin
1≤j≤n

κKap(R ∪ {j}) [adaptive search].

The adaptive search is expensive, since each stage requires processing all the entries in
the matrix. Thus, the cost of producing a cardinality-r pivot set is O(n2r) arithmetic
operations.

EVERYTHING IS VECCHIA 13

4.1.2. Adaptive sampling. Adaptive sampling is a class of cheaper algorithms
that sample new pivots from a distribution that prioritizes distance to the already
chosen pivots. Here we describe four variations of adaptive sampling.

• In “randomly pivoted Cholesky” (RPC, [6]), each pivot is sampled as follows.

R← R ∪ {i}, with prob(i) =
dA
(
ei, span{ej}j∈R

)2∑n
j=1 dA

(
ej , span{ej}j∈R

)2 . [RPC]

• In “square distance sampling” (SDS, [1]), we select a slightly different set of
sampling probabilities.

R← R ∪ {i}, with prob(i) =
dA
(
ei, {ej}j∈R

)2∑n
j=1 dA

(
ej , {ej}j∈R

)2 . [SDS]

• In “column pivoted Cholesky” (CPC, [17]), we use a simpler rule for inducting
new pivots.

R← R ∪ {i}, where i ∈ argmin
1≤j≤n

dA
(
ej , span{ej}j∈R

)
. [CPC]

• Last, in “farthest point sampling” (FPS, [15]), we apply the rule

R← R ∪ {i}, where i ∈ argmin
1≤j≤n

dA
(
ej , {ej}j∈R

)
. [FPS]

If there are ties in CPC or FPS, they can be broken arbitrarily. Each of the adaptive
sampling algorithms is cheap compared to the overall cost of matrix approximation.
In the context of partial Cholesky + diagonal, the cost of the partial Cholesky step is
already O(nr2) arithmetic operations, and adding an adaptive sampling rule requires
an extra O(nr) operations.

Adaptive sampling theory shows how each algorithm approximately minimizes
one of the following distance functionals.

(4.2)

ηRPC(R) =
n∑

i=1

dA
(
ei, span{ej}j∈R

)2
,

ηSDS(R) =
n∑

i=1

dA
(
ei, {ej}j∈R

)2
,

ηCPC(R) = max
1≤i≤n

dA
(
ei, span{ej}j∈R

)
, or

ηFPS(R) = max
1≤i≤n

dA
(
ei, {ej}j∈R

)
.

Each algorithm uses a pivot selection rule naturally related to (4.2), and the approx-
imation accuracy is controlled by the following theorem.

Theorem 4.2 (Adaptive sampling guarantees). For any positive-semidefinite
matrix A ∈ Cn×n and any cardinality r ≤ rank(A), the adaptive sampling algorithms
generate a random or deterministic pivot set R ⊆ {1, . . . , n} with cardinality |R| = r

14 E. KAMINETZ & R.J. WEBBER

that satisfies

E
[
ηRPC(R)

]
min|S|≤r ηRPC(S)

≤ 2r−1, [RPC]

ηCPC(R)

min|S|≤r ηCPC(S)
≤ r!, [CPC]

E
[
ηSDS(R)

]
min|S|≤r ηSDS(S)

≤ 5(log r + 2), [SDS]

ηFPS(R)

min|S|≤r ηFPS(S)
≤ 2. [FPS]

The adaptive sampling algorithms approximately minimize the objective functions
ηRPC, ηCPC, ηSDS, and ηFPS that are defined in (4.2).

Proof. The RPC error bound is [6, Lem. 5.5]. The CPC error bound is implied
by [8, Thm. 1] in the limit p→∞; see also [10, Thm. 2]. The SDS error bound is [1,
Thm. 3.1], with an improved approximation factor due to [21, Lem. 4.1]. The FPS
error bound is [15, Thm. 2.2].

Theorem 4.2 provides approximation guarantees that are independent of the di-
mensionality n and only depend on the cardinality r of the index set. As a limitation,
the approximation factors 2r−1 and r! in Theorem 4.2 increase rapidly with r. Yet
there is some additional “oversampling” theory that addresses this issue. For exam-
ple, randomly pivoted Cholesky with slightly more than r pivots controls the error
functional nearly as well as the best approximation with r pivots [6, Thm. 2.3].

A second, more major limitation is that the adaptive sampling algorithms opti-
mize the distance functionals ηRPC, ηCPS, ηSDS, and ηFPS, which are not the same as
the Kaporin condition number κKap (4.1). As such, it is no surprise that these algo-
rithms lead to slightly worse approximation quality than adaptive search. However,
they run much more quickly; see the experiments in section 5.

4.2. Adding to the sparsity pattern. Next we consider building a partial
Cholesky + Vecchia approximation that optimizes the Kaporin condition number

(4.3) κKap =
∏

dÃ(ei,span{ej}j<i)>0

dÃ
(
ei, span{ej}j∈Si

)2
dÃ
(
ei, span{ej}j<i

)2 , where Ã = P ∗AP .

We observe that each numerator term is the square of a distance functional

δi(Si) = dÃ
(
ei, span{ej}j∈Si

)
.

Therefore, we focus on adding q new indices to the index set Si that approximately
minimize δi. Unfortunately, finding the best q indices is NP-hard, by a reduction to
the sparse recovery problem studied in [22, Thm. 1]. However, the Vecchia literature
suggests a couple heuristic optimization methods [16, 18].

4.2.1. Nearest neighbor search. Nearest neighbor (NN) search is the most
common method for adding q new indices to a sparsity component [16]. In this
method, we recursively find a new index j /∈ Si that achieves the smallest possible
distance dÃ(ei, ej) and we add it.

Si ← Si ∪ {j}, where j ∈ argmin
k/∈Si

dÃ(ei, ek) [NN search].

EVERYTHING IS VECCHIA 15

Finding q new indices in this way requires looking up O(n) entries of the matrix and
performing O(n) arithmetic operations [4]. In special cases we can more efficiently
calculate approximate nearest neighbors for all n components, by using advanced data
structures [2]. However, even though the NN search can be made relatively efficient,
there is no guarantee that it does a good job at optimizing the distance functional δi.

4.2.2. Orthogonal matching pursuit. Orthogonal matching pursuit (OMP)
is an alternative approach for adding q new indices based on the following rule.

Si ← Si ∪ {j}, where j ∈ argmin
k/∈Si

νi
(
Si ∪ {k}

)
[OMP].

OMP requires looking up O(qn) entries of the matrix and performing O(q2n) addi-
tional arithmetic operations [18, App. C.1]. Since each optimization is expensive, one
option is to restrict the search to c candidate points that come from a NN search
or uniformly random sampling [18]. Then, the algorithm only requires O(qc) entry
look-ups and O(q2c) arithmetic operations where potentially c≪ n.

OMP is attractive because it directly targets the distance functional δi. However,
the only available theoretical guarantees [27, Thms. B and C] require fast off-diagonal
decay in the entries of A, which seldom occurs in practice. Hence, in the worst case,
OMP might result in a value δi that is incomparably worse than the best choice of q
indices.

5. Experiments and analysis. In this section, we study the empirical perfor-
mance of partial Cholesky + Vecchia approximations as applied to preconditioned
conjugate gradient and log determinant estimation on Gaussian kernel matrices in
real world kernel ridge regression problems.

5.1. Setup. Specifically, we work with 27 real-world datasets from libsvm and
openML. Each dataset consists of a set of training vectors {xi}ni=1 ⊆ Rd, where we
have scaled each coordinate so that the sample variance in each coordinate is 1, as
well as additional test vectors whose coordinates we scaled in the same way. We use
only the first n = 20,000 training vectors on any dataset with more than this due to
VRAM constraints. The datasets are downloadable using scripts originally developed
for [9], available at this link.

On each dataset, we take K(x,x′) = exp(− (x−x′)∗(x−x′)
2d) our Gaussian kernel

function, and let K ∈ Rn×n be such that K(i, j) = K(xi,xj). Finally, we take a
nugget parameter and set Θ = K+µI. For each dataset, Θ is the matrix we attempt
to approximate. We test the quality of the approximation on the methods discussed
in section 3 for both approximate application of the inverse and log determinant
estimation.

5.1.1. Preconditioned Conjugate Gradient. For preconditioned conjugate
gradient, our goal is to approximate Θ−1ztest for xtest a random test vector withheld
from the training vectors (but still normalized according to the sample variance of
the training vectors in each coordinate) and ztest(i) = K(xi,xtest) using the method
described in subsection 3.2. For our experiments, we choose five random xtest from
each dataset and run PCG against ztest, starting from the zero vector. For each
dataset and preconditioner, we record the number of iterations required so that ∥ztest−
Θŵ(k)∥2 ≤ 10−4∥ztest∥2, where ŵ(k) is PCG’s approximation of Θ−1ztest at the kth
iteration, at which point we consider the problem ”solved”. We repeat this for nugget
values 10−10, 10−6, and 10−3. We then plot, as a function of the number of iterations

https://github.com/eepperly/Robust-randomized-preconditioning-for-kernel-ridge-regression

16 E. KAMINETZ & R.J. WEBBER

k, the percentage of kernel ridge regression problems ”solved” by iteration k by each
preconditioner.

Note that this is in contrast to the usual procedure for kernel ridge regression,
where one forms a vector y whose ith coordinate y(i) is the label associated to data
point xi for all i ∈ 1 . . . n and computes y∗Θ−1. Both aim to eventually compute
y∗Θ−1ztest, but computing y∗Θ−1 first requires only one application of Θ−1 even if

there are multiple points z
(1)
test, z

(2)
test, . . . whose labels we want to predict. However, we

find empirically that PCG with Vecchia preconditioners requires orders of magnitude
fewer iterations when computing Θ−1ztest as opposed to y∗Θ−1 to attain the same
10−4 relative error tolerance, especially for small nugget; see Figure 8. While we also
observe improvement using partial Cholesky + Vecchia or partial Cholesky + diagonal
over existing methods when approximating y∗Θ−1, we still recommend computing
Θ−1ztest for each test point as opposed to y∗Θ−1 once, unless one must estimate
labels at several hundred or more test points.

5.1.2. Log-determinant estimation. For log-determinant estimation, we im-
plement both direct and indirect estimators as described in subsection 3.3 and sub-
section 3.4 respectively. For the indirect estimator, we use a Krylov subspace depth
of 100 and estimate the log determinant as the mean of 10 samples. For our figures,
we only plot data from the large nugget (µ = 10−3 case, as it was the only case
where any tractable preconditioner we tested attained reasonably accurate estimates
(though we present data for other nuggets in tables in Table 2, Table 3, and Table 4.
After obtaining the direct estimators and the indirect estimates, we obtained the ab-
solute error of the estimates compared to the ground truth log determinant on each
dataset (computed with a GPU), then presented the median of this error over the
27 datasets. Note that we are plotting error in the log determinant, and the y-axis
is also in log scale, so the y axes are akin to log-of-log scale of absolute error in the
determinant.

Importantly, while the indirect estimator is unbiased if the matrix logarithm is
computed exactly, this is not a reasonable assumption in practice for all but the best
preconditioners, at least with a feasible Krylov depth (in our case, 100). So while
Proposition 3.6 focuses mainly on bounding the variance, the error shown in the
figures mostly reflects bias.

5.2. Comparison of Pivot Choosers. In this section, we compare the per-
formance of the four different adaptive sampling pivot choosers from subsection 4.1.2
when used for partial Cholesky + diagonal and partial Cholesky + Vecchia precon-
ditioners, both in preconditioned conjugate gradient and log determinant estimation.
In figures, we refer to them by their respective three-letter abbreviations from sub-
section 4.1.2. We also compare them to the adaptive search preconditioner in subsec-
tion 4.1.1, which we made tractable for 20,000 × 20,000 matrices despite its O(n2r)
runtime by writing a custom GPU kernel for the algorithm using the package CUDA.jl
and running it on an RTX 3090. We refer to adaptive search as ”AS” in figures.

For the partial Cholesky portion, we always take r = ⌊
√
n⌋ as the rank of the

partial Cholesky decomposition. For the Vecchia portion, we take s = ⌊n1/4⌋ as
the maximum number of off-diagonal nonzeros per column. We always use greedy
conditional selection to choose the sparsity pattern for partial Cholesky + Vecchia,
and always with c = 10s candidates.

For PCG, we plot the results using the procedure described in subsection 5.1.1
in Figure 5. We observe that among adaptive sampling methods, RPC and SDS,
which perform similarly, are significantly better than CPC and FPS. Unsurprisingly,

EVERYTHING IS VECCHIA 17

Fig. 5. Comparison of pivot choosers used in partial Cholesky + diagonal and partial Cholesky
+ Vecchia preconditioners for conjugate gradient

adaptive search is generally better than adaptive sampling methods, and the gap is
significant for partial Cholesky + diagonal, suggesting the Kaporin condition number
could reasonably be used as a heuristic to improve existing pivot choosing methods.
However, the gap is nearly insignificant when applied to partial Cholesky + Vecchia,
providing evidence that Kaporin-inspired pivot choosers couldn’t hope to improve
partial Cholesky + Vecchia approximations much over existing pivot choosers. We
hypothesize that this is because Kaporin-oriented greedy conditional selection ”picks
up the slack” left by adaptive sampling methods when choosing the sparsity pattern.
Finally, we observe that relative performance is not significantly affected by varying
the nugget parameter.

For log determinant estimation, we give a bar chart using the procedure described
in subsection 5.1.2 (in particular, this data is only for µ = 10−3) in Figure 6. We
again observe that AS outperforms RPC and SDS, which outperform CPC and FPS.
The gap between AS and RPC or SDS, especially for partial Cholesky + Vecchia, is
more noticeable than with PCG, suggesting the Kaporin condition number is perhaps
a better pivot choosing heuristic when applied to log determinant estimation than
PCG..

5.3. How much does Vecchia help?. To study the improvement of partial
Cholesky + diagonal and/or partial Cholesky + Vecchia over previous methods, we
implement [11]’s preconditioner (”Frangella” in figures), [9]’s preconditioner (”Diaz”
in figures), and compare them to Randomly Pivoted Cholesky + diagonal, Randomly
Pivoted Cholesky + Vecchia with s = ⌊n1/4⌋ nonzero entries per column, and Ran-
domly Pivoted Cholesky + Vecchia with s = ⌊n1/3⌋ nonzero entries per column

18 E. KAMINETZ & R.J. WEBBER

Fig. 6. Comparison of pivot choosers used in partial Cholesky + diagonal and partial Cholesky
+ Vecchia estimators or preconditioners for log determinant estimation.

Fig. 7. Comparison of [11]’s and [9]’s RPC-based preconditioners (which use a Kaporin-
suboptimal diagonal), RPC plus diagonal, RPC plus Vecchia with s = n1/4, and RPC plus Vecchia
with s = n1/3, as applied to PCG on 5 kernelized test vectors per dataset as described in subsec-
tion 5.1.1.

(”RPC+D”, ”RPC+V 1
4”, and ”RPC+V 1

3” respectively), each with c = 10s GCS
canditates.

For PCG applied to the kernelized test vectors, we observe in Figure 7 that sim-
ply moving from [11]’s or [9]’s diagonal heuristics to the Kaporin-optimal choice of
diagonal provided by partial Cholesky + Vecchia approximations makes a dramatic
difference, more than doubling the number of problems solved within 100 PCG it-

EVERYTHING IS VECCHIA 19

Fig. 8. Comparison of [11]’s and [9]’s RPC-based preconditioners (which use a Kaporin-
suboptimal diagonal), RPC plus diagonal, RPC plus Vecchia with s = n1/4, and RPC plus Vecchia
with s = n1/3, as applied to PCG on the vector of labels for each dataset.

erations. As both strategies require the same computational complexity, this result
strongly favors partial Cholesky + diagonal approximations. Beyond this, adding
s = n1/4 entries to the sparsity pattern results in a considerable benefit, solving all
but two problems within 100 iterations, but there is only modest benefit from in-
creasing s to n1/3. We also observe that changing the nugget parameter does not
substantially affect the performance of any of these methods, which means they can
be used in a variety of settings.

We also examine PCG applied to the vector of labels in Figure 8, where the results
are considerably different. Although the relative order of the methods remains un-
changed, performance is worse across the board compared to PCG on the kernelized
test vectors. Moreover, the results are highly nugget-dependent. In the extremely
small nugget regime, even partial Cholesky + Vecchia with n = s1/3 fails to solve
half the problems within 10000 iterations. As the nugget increases, all methods per-
form better, and the significance of choosing a larger sparsity set first grows as more
problems are able to be solved, then shrinks as simpler Vecchia preconditioners also
become capable of solving the problems.

For log determinant estimation (Figure 9), the relative order remains, except
that [9]’s estimator slightly outperforms RPC+D. We suspect this is because [9]’s
separation of its approximation of K from its addition of the nugget is beneficial in
large nugget regimes like µ = 10−3. However, noting the logarithmic scale of the
figure, the only methods that could reasonably be usable for most tasks depending on
log determinant estimates (e.g. approximating likelihood ratios) are partial Cholesky
+ Vecchia. We also observe that the indirect estimator is essentially necessary to
obtain a reasonably small error, even for partial Cholesky + Vecchia.

Acknowledgments. The authors would like to thank Christopher J. Geoga,
Chris Camaño, Ethan N. Epperly, and Florian Schäfer for helpful discussions.

REFERENCES

[1] D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, in Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007,
https://dl.acm.org/doi/10.5555/1283383.1283494.

https://dl.acm.org/doi/10.5555/1283383.1283494

20 E. KAMINETZ & R.J. WEBBER

Fig. 9. Comparison of [11]’s and [9]’s RPC-based preconditioners (which use a Kaporin-
suboptimal diagonal), RPC plus diagonal, RPC plus Vecchia with s = n1/4, and RPC plus Vecchia
with s = n1/3, as applied to log determinant estimation.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, An optimal
algorithm for approximate nearest neighbor searching fixed dimensions, Journal of the
ACM, 45 (1998), p. 891–923, https://doi.org/10.1145/293347.293348.

[3] O. Axelsson and I. Kaporin, On the sublinear and superlinear rate of convergence of conju-
gate gradient methods, Numerical Algorithms, 25 (2000), p. 1–22, https://doi.org/10.1023/
a:1016694031362.

[4] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds for
selection, Journal of Computer and System Sciences, 7 (1973), pp. 448–461, https://doi.
org/10.1016/S0022-0000(73)80033-9.

[5] D. Cai, E. Chow, and Y. Xi, Posterior covariance structures in gaussian processes, SIAM
Journal on Matrix Analysis and Applications, 46 (2025), pp. 1640–1673, https://doi.org/
10.1137/24M1684918.

[6] Y. Chen, E. N. Epperly, J. A. Tropp, and R. J. Webber, Randomly pivoted Cholesky:
Practical approximation of a kernel matrix with few entry evaluations, Communications
on Pure and Applied Mathematics, 78 (2025), pp. 995–1041, https://doi.org/10.1002/cpa.
22234.

[7] A. P. Dempster, Covariance selection, Biometrics, 28 (1972), pp. 157–175, https://doi.org/
https://doi.org/10.2307/2528966.

[8] A. Deshpande and K. Varadarajan, Sampling-based dimension reduction for subspace ap-
proximation, in Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of
Computing, 2007, https://doi.org/10.1145/1250790.1250884.

[9] M. D́ıaz, E. N. Epperly, Z. Frangella, J. A. Tropp, and R. J. Webber, Robust, randomized
preconditioning for kernel ridge regression, 2024, https://arxiv.org/abs/2304.12465.

[10] H. Engler, The behavior of the QR-factorization algorithm with column pivoting, Ap-
plied Mathematics Letters, 10 (1997), pp. 7–11, https://doi.org/10.1016/S0893-9659(97)
00098-0.

[11] Z. Frangella, J. A. Tropp, and M. Udell, Randomized nyström preconditioning, SIAM
Journal on Matrix Analysis and Applications, 44 (2023), pp. 718–752, https://doi.org/10.
1137/21M1466244.

https://doi.org/10.1145/293347.293348
https://doi.org/10.1023/a:1016694031362
https://doi.org/10.1023/a:1016694031362
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1137/24M1684918
https://doi.org/10.1137/24M1684918
https://doi.org/10.1002/cpa.22234
https://doi.org/10.1002/cpa.22234
https://doi.org/https://doi.org/10.2307/2528966
https://doi.org/https://doi.org/10.2307/2528966
https://doi.org/10.1145/1250790.1250884
https://arxiv.org/abs/2304.12465
https://doi.org/10.1016/S0893-9659(97)00098-0
https://doi.org/10.1016/S0893-9659(97)00098-0
https://doi.org/10.1137/21M1466244
https://doi.org/10.1137/21M1466244

EVERYTHING IS VECCHIA 21

name quantity Frangella RPC+D RPC+V 1
4 RPC+V 1

3 CPC+D FPS+D GKL+D SDS+D CPC+V 1
4 FPS+V 1

4 GKL+V 1
4 SDS+V 1

4 Diaz
direct 334.845 -6.2864e+04 -1.1253e+05 -1.1754e+05 -3.1689e+04 -3.8907e+04 -7.6956e+04 -6.7110e+04 -1.0960e+05 -1.1035e+05 -1.1344e+05 -1.1289e+05 -1.3681e+05

ACSIncome mean -2.3689e+04 -1.0827e+05 -1.2515e+05 -1.2525e+05 -7.7495e+04 -9.0769e+04 -1.1251e+05 -1.0836e+05 -1.2486e+05 -1.2529e+05 -1.2526e+05 -1.2517e+05 -1.2246e+05
(Truth: -1.2527e+05) stdev 681.065 631.001 190.929 126.609 657.369 780.049 414.095 430.400 206.647 249.839 242.794 274.351 524.556

direct 369.476 -6.4580e+04 -1.1333e+05 -1.1958e+05 -4.6907e+04 -5.3631e+04 -7.3915e+04 -6.6741e+04 -1.1060e+05 -1.1170e+05 -1.1449e+05 -1.1373e+05 -1.3681e+05
Airlines DepDelay 1M mean -4.1623e+04 -1.1215e+05 -1.2823e+05 -1.2866e+05 -1.0671e+05 -1.1120e+05 -1.1777e+05 -1.1346e+05 -1.2824e+05 -1.2828e+05 -1.2840e+05 -1.2838e+05 -1.2657e+05
(Truth: -1.2863e+05) stdev 1401.108 544.001 248.538 186.685 1046.949 426.923 282.680 660.750 141.401 192.545 346.960 274.493 189.154

direct 544.274 -1.2677e+05 -1.3512e+05 -1.3589e+05 -9.5746e+04 -9.8808e+04 -1.3035e+05 -1.2811e+05 -1.3482e+05 -1.3486e+05 -1.3526e+05 -1.3520e+05 -1.3711e+05
COMET MC SAMPLE mean -1.3159e+05 -1.3631e+05 -1.3654e+05 -1.3652e+05 -1.3610e+05 -1.3604e+05 -1.3618e+05 -1.3617e+05 -1.3653e+05 -1.3653e+05 -1.3654e+05 -1.3655e+05 -1.3643e+05
(Truth: -1.3653e+05) stdev 1826.516 157.678 75.074 53.732 536.307 426.772 116.022 134.259 64.210 118.108 78.734 47.944 63.070

direct 365.986 -8.2071e+04 -1.2416e+05 -1.2674e+05 -3.7946e+04 -3.9718e+04 -9.8787e+04 -8.7935e+04 -1.2192e+05 -1.2219e+05 -1.2464e+05 -1.2444e+05 -1.3687e+05
Click prediction small mean -5.8934e+04 -1.2247e+05 -1.3019e+05 -1.3010e+05 -1.0320e+05 -1.0532e+05 -1.2550e+05 -1.2312e+05 -1.3008e+05 -1.3018e+05 -1.3016e+05 -1.3018e+05 -1.2925e+05
(Truth: -1.3017e+05) stdev 1869.905 467.448 190.691 142.414 644.305 1319.048 468.703 478.371 218.865 160.467 126.979 148.108 313.733

direct 307.176 -3.5339e+04 -5.7627e+04 -6.3177e+04 -1.4202e+04 -1.3908e+04 -3.9466e+04 -3.5332e+04 -5.0668e+04 -5.0663e+04 -5.8817e+04 -5.7623e+04 -1.3682e+05
HIGGS mean -4.3235e+04 -7.7894e+04 -8.9008e+04 -8.9476e+04 -5.3704e+04 -5.3657e+04 -8.3727e+04 -7.7353e+04 -8.7082e+04 -8.6740e+04 -8.9060e+04 -8.8816e+04 -8.4939e+04

(Truth: -8.9494e+04) stdev 1045.022 633.831 616.038 273.716 500.336 654.686 553.356 714.033 511.948 362.210 288.936 590.065 666.023
direct 334.847 -3.2156e+04 -5.1422e+04 -5.5705e+04 -4445.350 -4655.401 -3.7606e+04 -3.1760e+04 -4.7410e+04 -4.7407e+04 -5.3137e+04 -5.1495e+04 -1.3686e+05

MNIST mean -4.6163e+04 -6.7671e+04 -7.0694e+04 -7.0737e+04 -4.8851e+04 -4.8573e+04 -7.0307e+04 -6.6813e+04 -7.0399e+04 -7.0361e+04 -7.0609e+04 -7.0590e+04 -6.8281e+04
(Truth: -7.0740e+04) stdev 494.214 388.971 231.871 216.753 540.955 584.384 361.600 310.046 339.559 386.977 156.285 166.022 707.193

direct 344.702 -4.8448e+04 -9.5010e+04 -1.0252e+05 -3.2529e+04 -3.7509e+04 -5.5835e+04 -4.9297e+04 -9.1787e+04 -9.2628e+04 -9.6599e+04 -9.5284e+04 -1.3678e+05
Medical-Appointment mean -2.4469e+04 -9.4161e+04 -1.1734e+05 -1.1765e+05 -6.7118e+04 -7.5606e+04 -1.0107e+05 -9.4446e+04 -1.1638e+05 -1.1684e+05 -1.1751e+05 -1.1733e+05 -1.1087e+05
(Truth: -1.1774e+05) stdev 735.489 409.146 294.861 264.997 665.003 593.038 565.881 411.805 211.164 216.395 362.523 346.267 602.909

direct 434.227 -1.1491e+05 -1.2906e+05 -1.3132e+05 -8.4264e+04 -9.2031e+04 -1.2033e+05 -1.1643e+05 -1.2681e+05 -1.2701e+05 -1.2987e+05 -1.2924e+05 -1.3714e+05
MiniBoonNE mean -1.3090e+05 -1.3439e+05 -1.3494e+05 -1.3492e+05 -1.3394e+05 -1.3421e+05 -1.3460e+05 -1.3447e+05 -1.3497e+05 -1.3488e+05 -1.3493e+05 -1.3487e+05 -1.3479e+05

(Truth: -1.3493e+05) stdev 1535.619 376.637 177.803 114.152 303.253 331.832 258.444 251.644 136.893 171.195 174.572 214.645 141.837
direct 300.073 -3.3351e+04 -4.8600e+04 -5.3492e+04 -1.2935e+04 -1.2945e+04 -4.2656e+04 -3.4734e+04 -4.0707e+04 -4.0708e+04 -5.3255e+04 -4.9211e+04 -1.3688e+05

YearPredictionMSD mean -3.6243e+04 -6.8724e+04 -7.4172e+04 -7.5143e+04 -4.8014e+04 -4.8183e+04 -7.3891e+04 -7.0087e+04 -7.1299e+04 -7.1423e+04 -7.5190e+04 -7.4431e+04 -7.2954e+04
(Truth: -7.5234e+04) stdev 464.650 525.411 444.036 294.478 520.207 431.839 245.356 507.840 519.697 238.316 407.982 313.404 1169.069

direct 390.617 -3.6516e+04 -6.9339e+04 -7.5355e+04 -1.0481e+04 -1.2382e+04 -4.3540e+04 -3.7320e+04 -6.3403e+04 -6.3606e+04 -7.1366e+04 -6.9454e+04 -1.3580e+05
a9a mean -2.6995e+04 -7.7022e+04 -9.0674e+04 -9.0963e+04 -3.8335e+04 -4.0240e+04 -8.6246e+04 -7.8684e+04 -8.8259e+04 -8.8514e+04 -9.0766e+04 -9.0681e+04 -8.6520e+04

(Truth: -9.0819e+04) stdev 525.440 730.245 436.426 214.374 451.557 367.468 531.301 658.115 408.269 336.019 329.394 271.758 606.337
direct 396.911 -8.4913e+04 -1.0746e+05 -1.0888e+05 -4.8752e+04 -6.0195e+04 -9.3483e+04 -8.8055e+04 -1.0636e+05 -1.0672e+05 -1.0778e+05 -1.0758e+05 -1.1298e+05

cadata mean -9.6039e+04 -1.0882e+05 -1.1062e+05 -1.1060e+05 -1.0767e+05 -1.0827e+05 -1.0886e+05 -1.0849e+05 -1.1066e+05 -1.1063e+05 -1.1062e+05 -1.1060e+05 -1.1026e+05
(Truth: -1.1061e+05) stdev 1015.349 338.949 108.997 82.596 698.542 479.771 191.300 334.357 108.104 142.108 109.371 106.229 46.488

direct 412.645 -9.3538e+04 -1.2893e+05 -1.3092e+05 -5.6889e+04 -7.0179e+04 -1.0452e+05 -9.7116e+04 -1.2767e+05 -1.2818e+05 -1.2942e+05 -1.2915e+05 -1.3688e+05
cod-rna mean -8.2082e+04 -1.2752e+05 -1.3327e+05 -1.3331e+05 -1.2605e+05 -1.2758e+05 -1.2791e+05 -1.2647e+05 -1.3340e+05 -1.3328e+05 -1.3323e+05 -1.3336e+05 -1.3271e+05

(Truth: -1.3330e+05) stdev 1693.477 430.720 173.391 140.765 489.192 194.441 210.147 280.583 141.838 168.978 149.338 106.182 119.019
direct 436.692 -3.6931e+04 -7.3114e+04 -8.0005e+04 -2.3851e+04 -2.6701e+04 -4.1805e+04 -3.8151e+04 -6.9031e+04 -6.9733e+04 -7.4614e+04 -7.3558e+04 -1.3680e+05

connect-4 mean -3.0513e+04 -7.9013e+04 -9.6382e+04 -9.6718e+04 -5.7403e+04 -6.1399e+04 -8.7759e+04 -8.1265e+04 -9.5190e+04 -9.5873e+04 -9.6722e+04 -9.6508e+04 -9.2736e+04
(Truth: -9.6767e+04) stdev 519.676 439.614 456.823 377.811 491.442 451.741 474.423 769.840 444.849 500.929 383.780 236.957 669.897

direct 454.444 -7.3306e+04 -1.2538e+05 -1.2765e+05 -4.4468e+04 -5.5897e+04 -8.5953e+04 -7.4830e+04 -1.2436e+05 -1.2477e+05 -1.2585e+05 -1.2541e+05 -1.3682e+05
covtype.binary mean -4.2024e+04 -1.1700e+05 -1.2984e+05 -1.2981e+05 -1.0074e+05 -1.1224e+05 -1.1918e+05 -1.1657e+05 -1.2992e+05 -1.2986e+05 -1.2981e+05 -1.2984e+05 -1.2776e+05

(Truth: -1.2985e+05) stdev 1065.614 553.854 167.341 82.286 544.802 858.753 641.038 347.044 140.456 93.190 145.128 176.941 231.861
direct 341.541 -4.7290e+04 -9.0957e+04 -9.6467e+04 -5475.087 -8029.605 -6.1002e+04 -4.9405e+04 -8.5242e+04 -8.5376e+04 -9.3187e+04 -9.1324e+04 -1.3685e+05

creditcard mean -3.3639e+04 -9.1483e+04 -1.0921e+05 -1.0942e+05 -3.9204e+04 -4.2008e+04 -1.0021e+05 -9.1323e+04 -1.0755e+05 -1.0765e+05 -1.0938e+05 -1.0938e+05 -9.9553e+04
(Truth: -1.0955e+05) stdev 919.532 551.257 353.856 201.626 2067.358 942.980 497.463 386.728 230.956 190.024 187.160 257.150 289.465

direct 420.947 -9.4323e+04 -1.2907e+05 -1.3115e+05 -5.3694e+04 -6.9985e+04 -1.0474e+05 -9.8605e+04 -1.2772e+05 -1.2831e+05 -1.2927e+05 -1.2912e+05 -1.3691e+05
diamonds mean -9.1277e+04 -1.2995e+05 -1.3373e+05 -1.3370e+05 -1.2550e+05 -1.2790e+05 -1.3038e+05 -1.2905e+05 -1.3373e+05 -1.3358e+05 -1.3370e+05 -1.3376e+05 -1.3330e+05

(Truth: -1.3372e+05) stdev 1523.201 459.712 147.119 95.742 855.481 786.498 320.502 374.067 202.342 163.998 96.625 95.143 143.682
direct 458.793 -1.0550e+05 -1.2988e+05 -1.3207e+05 -8.2491e+04 -9.0911e+04 -1.1175e+05 -1.0578e+05 -1.2906e+05 -1.2941e+05 -1.3006e+05 -1.2982e+05 -1.3700e+05

hls4ml lhc jets hlf mean -1.2062e+05 -1.3324e+05 -1.3458e+05 -1.3454e+05 -1.3269e+05 -1.3310e+05 -1.3333e+05 -1.3270e+05 -1.3453e+05 -1.3452e+05 -1.3460e+05 -1.3457e+05 -1.3430e+05
(Truth: -1.3455e+05) stdev 1642.532 309.136 63.948 122.235 651.027 431.501 194.544 267.382 211.056 136.712 126.157 114.718 118.022

direct 383.848 -6.1634e+04 -1.1392e+05 -1.1832e+05 -2.9214e+04 -3.6693e+04 -7.7972e+04 -6.2816e+04 -1.1239e+05 -1.1273e+05 -1.1420e+05 -1.1389e+05 -1.3680e+05
ijcnn1 mean -3.3873e+04 -1.0553e+05 -1.2385e+05 -1.2376e+05 -7.1030e+04 -8.5248e+04 -1.1340e+05 -1.0493e+05 -1.2371e+05 -1.2373e+05 -1.2387e+05 -1.2382e+05 -1.1926e+05

(Truth: -1.2383e+05) stdev 643.282 679.864 262.984 162.527 962.454 528.583 220.525 614.284 242.612 312.572 147.162 232.451 291.496
direct 296.254 -2.7846e+04 -4.1473e+04 -4.5695e+04 -1.5077e+04 -1.6102e+04 -3.1524e+04 -2.7863e+04 -3.6655e+04 -3.7092e+04 -4.2590e+04 -4.1457e+04 -1.3684e+05

jannis mean -5.3977e+04 -6.5018e+04 -6.7421e+04 -6.7760e+04 -5.8763e+04 -5.9286e+04 -6.6624e+04 -6.5532e+04 -6.6918e+04 -6.6839e+04 -6.7387e+04 -6.7549e+04 -6.7112e+04
(Truth: -6.7629e+04) stdev 581.731 493.705 394.852 580.738 470.684 657.624 382.370 423.126 446.733 428.016 298.098 413.465 950.700

direct 151.107 -7411.038 -1.5058e+04 -1.6366e+04 -4627.919 -4866.678 -8934.265 -7484.812 -1.4249e+04 -1.4308e+04 -1.5535e+04 -1.5078e+04 -3.4623e+04
phishing mean -8713.223 -1.8569e+04 -2.0118e+04 -2.0123e+04 -1.2750e+04 -1.2991e+04 -1.9654e+04 -1.8633e+04 -2.0051e+04 -1.9968e+04 -1.9998e+04 -2.0042e+04 -1.9272e+04

(Truth: -2.0079e+04) stdev 141.840 366.919 187.682 149.784 439.265 341.913 212.769 281.780 131.203 115.444 100.918 164.168 252.101
direct 307.760 -1.3522e+04 -1.7143e+04 -1.9643e+04 -1.2910e+04 -1.2919e+04 -1.4392e+04 -1.3536e+04 -1.6657e+04 -1.6675e+04 -1.7793e+04 -1.7160e+04 -1.3679e+05

santander mean -3.0250e+04 -3.0372e+04 -3.0410e+04 -3.0375e+04 -3.0313e+04 -3.0441e+04 -3.0390e+04 -3.0528e+04 -3.0480e+04 -3.0579e+04 -3.0503e+04 -3.0452e+04 -3.0421e+04
(Truth: -3.0466e+04) stdev 451.504 177.149 203.206 139.763 313.523 260.562 148.539 232.805 214.325 292.871 137.495 216.849 1015.891

direct 302.999 -3.9264e+04 -6.2419e+04 -6.7501e+04 -1.6818e+04 -1.6759e+04 -5.4236e+04 -3.9336e+04 -5.6922e+04 -5.6897e+04 -6.6423e+04 -6.2698e+04 -1.3689e+05
sensit vehicle mean -2.3976e+04 -7.6516e+04 -8.1223e+04 -8.1364e+04 -4.6982e+04 -4.7200e+04 -8.0872e+04 -7.6814e+04 -7.9724e+04 -7.9703e+04 -8.1460e+04 -8.1130e+04 -7.6592e+04

(Truth: -8.1473e+04) stdev 777.125 426.125 152.798 298.921 583.034 489.374 377.015 368.662 345.798 395.643 216.860 231.766 765.183
direct 324.221 -5.7404e+04 -9.3336e+04 -1.0056e+05 -2.7673e+04 -3.1935e+04 -6.6285e+04 -5.8435e+04 -8.8029e+04 -8.8682e+04 -9.4726e+04 -9.3669e+04 -1.3684e+05

sensorless mean -4.7981e+04 -1.0458e+05 -1.1687e+05 -1.1717e+05 -7.0026e+04 -7.4891e+04 -1.1025e+05 -1.0543e+05 -1.1538e+05 -1.1560e+05 -1.1712e+05 -1.1719e+05 -1.1398e+05
(Truth: -1.1736e+05) stdev 790.815 367.840 391.474 228.070 388.794 259.302 314.499 464.837 308.558 303.069 297.195 320.440 353.842

direct 519.161 -7.2587e+04 -7.5642e+04 -7.5950e+04 -7.1532e+04 -7.2538e+04 -7.3642e+04 -7.2533e+04 -7.5514e+04 -7.5569e+04 -7.5656e+04 -7.5639e+04 -7.6293e+04
skin nonskin mean -7.4990e+04 -7.6242e+04 -7.6289e+04 -7.6288e+04 -7.6096e+04 -7.6204e+04 -7.6288e+04 -7.6205e+04 -7.6279e+04 -7.6262e+04 -7.6278e+04 -7.6274e+04 -7.6280e+04

(Truth: -7.6281e+04) stdev 801.067 86.027 74.116 44.680 76.143 49.154 46.108 89.715 79.217 71.462 63.574 48.515 3.255
direct 338.316 -4.1925e+04 -6.0368e+04 -6.6963e+04 -2.2793e+04 -2.4114e+04 -4.7360e+04 -4.1880e+04 -5.4507e+04 -5.4682e+04 -6.4142e+04 -6.0279e+04 -1.3684e+05

volkert mean -5.0125e+04 -8.3528e+04 -8.8681e+04 -8.9992e+04 -6.6925e+04 -6.8103e+04 -8.7689e+04 -8.3626e+04 -8.6014e+04 -8.6165e+04 -9.0027e+04 -8.8841e+04 -8.7235e+04
(Truth: -9.0445e+04) stdev 749.510 534.948 355.853 506.511 564.416 667.478 595.732 314.501 539.299 255.391 326.941 553.132 521.088

direct 361.182 -2.6315e+04 -4.7931e+04 -5.2613e+04 -1.1726e+04 -1.1751e+04 -3.6964e+04 -2.6193e+04 -4.2663e+04 -4.2703e+04 -5.3215e+04 -4.7827e+04 -1.2284e+05
w8a mean -4.0155e+04 -5.6918e+04 -6.4267e+04 -6.4539e+04 -4.6567e+04 -4.6376e+04 -6.1324e+04 -5.6914e+04 -6.3259e+04 -6.3396e+04 -6.4413e+04 -6.4307e+04 -6.0613e+04

(Truth: -6.4648e+04) stdev 654.053 472.312 235.256 175.029 992.436 975.766 228.100 462.505 323.408 382.396 272.378 421.683 558.045
direct 332.002 -3.0460e+04 -4.1784e+04 -4.5952e+04 -1016.972 -1200.986 -3.7687e+04 -3.0366e+04 -3.3334e+04 -3.3358e+04 -4.5418e+04 -4.1687e+04 -1.3686e+05

yolanda mean -3.8924e+04 -6.3560e+04 -6.6313e+04 -6.6997e+04 -3.9408e+04 -3.9066e+04 -6.6583e+04 -6.3998e+04 -6.3285e+04 -6.3543e+04 -6.6981e+04 -6.6548e+04 -6.5738e+04
(Truth: -6.7057e+04) stdev 614.046 384.050 451.450 361.899 1102.380 1251.893 263.187 329.048 319.041 387.431 306.098 506.957 460.553

Table 2
Log determinant estimation data for direct and indirect preconditioners on each dataset, for

µ = 10−3

[12] A. Frommer and M. Schweitzer, Error bounds and estimates for Krylov subspace approxima-
tions of Stieltjes matrix functions, 56 (2016), https://doi.org/10.1007/s10543-015-0596-3.

[13] G. Golub, Numerical methods for solving linear least squares problems, Numerische Mathe-
matik, 7 (1965), p. 206–216, https://doi.org/10.1007/bf01436075.

[14] G. H. Golub and C. F. Van Loan, Matrix Computations - 4th Edition, Johns Hopkins Uni-
versity Press, Philadelphia, PA, 4 ed., 2013, https://doi.org/10.1137/1.9781421407944.

[15] T. F. Gonzalez, Clustering to minimize the maximum intercluster distance, Theoretical Com-
puter Science, 38 (1985), pp. 293–306, https://doi.org/10.1016/0304-3975(85)90224-5.

[16] J. Guinness, Permutation and grouping methods for sharpening gaussian process approxima-
tions, Technometrics, 60 (2018), pp. 415–429.

[17] N. J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix, in Reliable
Numerical Computation, M. G. Cox and S. J. Hammarling, eds., Oxford University Press,
1990, pp. 161–185, https://eprints.maths.manchester.ac.uk/id/eprint/1193.

[18] S. Huan, J. Guinness, M. Katzfuss, H. Owhadi, and F. Schäfer, Sparse Cholesky factor-
ization by greedy conditional selection, 2023, https://arxiv.org/abs/2307.11648.

[19] I. E. Kaporin, New convergence results and preconditioning strategies for the conjugate
gradient method, Numerical Linear Algebra with Applications, 1 (1994), pp. 179–210,
https://doi.org/https://doi.org/10.1002/nla.1680010208.

https://doi.org/10.1007/s10543-015-0596-3
https://doi.org/10.1007/bf01436075
https://doi.org/10.1137/1.9781421407944
https://doi.org/10.1016/0304-3975(85)90224-5
https://eprints.maths.manchester.ac.uk/id/eprint/1193
https://arxiv.org/abs/2307.11648
https://doi.org/https://doi.org/10.1002/nla.1680010208

22 E. KAMINETZ & R.J. WEBBER

name quantity Frangella RPC+D RPC+V 1
4 RPC+V 1

3 CPC+D FPS+D GKL+D SDS+D CPC+V 1
4 FPS+V 1

4 GKL+V 1
4 SDS+V 1

4 Diaz
direct 334.925 -6.6992e+04 -1.4427e+05 -1.6320e+05 -3.1831e+04 -3.9126e+04 -8.5191e+04 -6.7841e+04 -1.3516e+05 -1.3680e+05 -1.5152e+05 -1.4448e+05 -2.7399e+05

ACSIncome mean -3268.924 -7.1199e+04 -1.7354e+05 -1.9756e+05 -3.4612e+04 -4.2135e+04 -9.2591e+04 -7.2192e+04 -1.5944e+05 -1.6208e+05 -1.8419e+05 -1.7421e+05 -2.3247e+05
(Truth: -2.1403e+05) stdev 317.645 184.908 436.648 444.975 248.157 183.212 270.306 299.461 317.979 458.527 357.319 479.340 948.544

direct 369.589 -6.6740e+04 -1.3091e+05 -1.4844e+05 -4.7225e+04 -5.4099e+04 -7.7293e+04 -6.9605e+04 -1.2415e+05 -1.2628e+05 -1.3502e+05 -1.3220e+05 -2.7399e+05
Airlines DepDelay 1M mean -2172.741 -6.9737e+04 -1.5572e+05 -1.8993e+05 -4.9436e+04 -5.6695e+04 -8.1512e+04 -7.2927e+04 -1.4345e+05 -1.4757e+05 -1.6295e+05 -1.5806e+05 -2.4262e+05
(Truth: -2.2360e+05) stdev 128.847 177.521 530.649 760.602 224.668 270.464 257.910 174.131 227.897 395.783 511.491 495.315 902.888

direct 547.855 -2.0346e+05 -2.6598e+05 -2.6867e+05 -1.0295e+05 -1.0845e+05 -2.5023e+05 -2.4246e+05 -2.6426e+05 -2.6493e+05 -2.6703e+05 -2.6631e+05 -2.7429e+05
COMET MC SAMPLE mean -8.3203e+04 -2.4517e+05 -2.7074e+05 -2.7102e+05 -1.0586e+05 -1.1242e+05 -2.5950e+05 -2.5237e+05 -2.7025e+05 -2.7056e+05 -2.7086e+05 -2.7076e+05 -2.2887e+05
(Truth: -2.7101e+05) stdev 2.0279e+04 404.252 170.426 97.918 1205.659 1883.810 171.093 190.794 128.086 158.429 148.999 253.683 954.794

direct 366.155 -8.8015e+04 -1.9584e+05 -2.1138e+05 -3.8238e+04 -4.0002e+04 -1.2584e+05 -1.0006e+05 -1.8499e+05 -1.8580e+05 -2.0221e+05 -1.9832e+05 -2.7405e+05
Click prediction small mean -3053.860 -9.0084e+04 -2.2101e+05 -2.3505e+05 -3.9592e+04 -4.1379e+04 -1.3771e+05 -1.0348e+05 -2.0764e+05 -2.0891e+05 -2.2752e+05 -2.2384e+05 -2.5100e+05
(Truth: -2.4120e+05) stdev 278.677 165.415 317.801 539.764 127.587 74.074 265.943 183.803 276.564 357.236 384.792 350.907 590.354

direct 307.249 -3.5030e+04 -5.8029e+04 -6.3897e+04 -1.4254e+04 -1.3959e+04 -3.9827e+04 -3.5727e+04 -5.1104e+04 -5.1096e+04 -5.9604e+04 -5.8374e+04 -2.7400e+05
HIGGS mean -3.2567e+04 -6.8550e+04 -9.3617e+04 -9.6118e+04 -4.3267e+04 -4.2890e+04 -7.7451e+04 -6.9525e+04 -8.7790e+04 -8.8048e+04 -9.4790e+04 -9.4025e+04 -1.0906e+05

(Truth: -9.6956e+04) stdev 678.839 513.307 323.742 498.868 757.878 619.386 297.815 251.946 682.111 425.105 349.786 611.421 1692.906
direct 334.968 -3.1735e+04 -5.2120e+04 -5.6860e+04 -4475.040 -4685.436 -3.7995e+04 -3.2518e+04 -4.8036e+04 -4.8033e+04 -5.4115e+04 -5.2449e+04 -2.7404e+05

MNIST mean -4.2797e+04 -6.4045e+04 -7.3831e+04 -7.4447e+04 -4.5515e+04 -4.5305e+04 -7.0893e+04 -6.4710e+04 -7.3053e+04 -7.3109e+04 -7.4354e+04 -7.3906e+04 -8.2306e+04
(Truth: -7.4651e+04) stdev 391.498 457.497 308.236 260.081 683.829 833.240 504.378 506.625 254.668 301.245 409.419 319.472 2074.463

direct 344.779 -4.8381e+04 -1.0381e+05 -1.1648e+05 -3.2677e+04 -3.7706e+04 -5.6973e+04 -4.8880e+04 -9.9462e+04 -1.0051e+05 -1.0676e+05 -1.0405e+05 -2.7397e+05
Medical-Appointment mean -7863.124 -5.8412e+04 -1.3389e+05 -1.5333e+05 -4.0463e+04 -4.5940e+04 -6.9628e+04 -5.8998e+04 -1.2652e+05 -1.2790e+05 -1.4007e+05 -1.3443e+05 -2.0437e+05
(Truth: -1.7067e+05) stdev 347.785 324.926 298.101 649.913 284.663 156.877 268.785 323.524 622.214 369.176 397.115 343.315 913.384

direct 436.213 -1.3317e+05 -1.7701e+05 -1.9326e+05 -8.6621e+04 -9.5533e+04 -1.5398e+05 -1.4180e+05 -1.6236e+05 -1.6352e+05 -1.8781e+05 -1.8183e+05 -2.7433e+05
MiniBoonNE mean -1.0976e+04 -1.4178e+05 -2.1366e+05 -2.3582e+05 -8.8736e+04 -9.8078e+04 -1.7703e+05 -1.5448e+05 -1.9122e+05 -1.9266e+05 -2.2850e+05 -2.2110e+05 -2.5011e+05

(Truth: -2.5169e+05) stdev 2885.110 303.743 375.604 634.117 319.867 274.811 348.341 458.840 471.799 328.082 487.580 682.160 418.726
direct 300.172 -3.2956e+04 -4.8939e+04 -5.4265e+04 -1.2999e+04 -1.3009e+04 -4.3459e+04 -3.4469e+04 -4.1146e+04 -4.1148e+04 -5.4490e+04 -4.9791e+04 -2.7406e+05

YearPredictionMSD mean -3.0988e+04 -6.2187e+04 -7.6926e+04 -7.9996e+04 -4.1818e+04 -4.1986e+04 -7.5328e+04 -6.4631e+04 -7.1072e+04 -7.0857e+04 -8.0555e+04 -7.7224e+04 -8.9637e+04
(Truth: -8.1141e+04) stdev 469.526 381.288 575.546 458.809 404.891 379.834 682.798 400.727 378.032 469.249 448.637 371.432 1555.579

direct 390.780 -3.6299e+04 -7.1624e+04 -7.9463e+04 -1.0522e+04 -1.2427e+04 -4.4065e+04 -3.6688e+04 -6.5667e+04 -6.5888e+04 -7.4596e+04 -7.1920e+04 -2.7193e+05
a9a mean -2.2254e+04 -5.9859e+04 -1.0054e+05 -1.0412e+05 -3.1113e+04 -3.3183e+04 -7.3280e+04 -6.0063e+04 -9.3385e+04 -9.3594e+04 -1.0229e+05 -1.0089e+05 -1.3495e+05

(Truth: -1.0681e+05) stdev 385.449 255.444 513.462 395.157 440.785 361.225 463.507 411.840 460.235 496.559 419.359 368.032 1883.872
direct 397.433 -9.5782e+04 -1.7194e+05 -1.8733e+05 -4.9534e+04 -6.1418e+04 -1.2481e+05 -1.0575e+05 -1.5769e+05 -1.6039e+05 -1.8118e+05 -1.7598e+05 -2.2616e+05

cadata mean -1.8143e+04 -9.8206e+04 -1.9711e+05 -2.0810e+05 -5.4319e+04 -6.3254e+04 -1.3997e+05 -1.1411e+05 -1.8295e+05 -1.8618e+05 -2.0342e+05 -2.0006e+05 -2.1511e+05
(Truth: -2.1249e+05) stdev 4174.340 234.610 567.249 323.322 825.211 336.002 303.583 485.779 387.897 361.191 362.794 280.979 277.213

direct 412.913 -1.0154e+05 -2.0426e+05 -2.2305e+05 -5.7483e+04 -7.1388e+04 -1.3327e+05 -1.1230e+05 -1.9223e+05 -1.9539e+05 -2.1449e+05 -2.0823e+05 -2.7407e+05
cod-rna mean -2145.394 -1.0287e+05 -2.3169e+05 -2.4745e+05 -5.8141e+04 -7.1681e+04 -1.4665e+05 -1.1592e+05 -2.1770e+05 -2.2163e+05 -2.4070e+05 -2.3551e+05 -2.5973e+05

(Truth: -2.5420e+05) stdev 429.133 209.086 359.058 420.114 52.705 96.386 300.256 235.355 367.632 452.731 349.753 407.336 219.823
direct 436.867 -3.7352e+04 -7.4977e+04 -8.2746e+04 -2.3940e+04 -2.6807e+04 -4.2144e+04 -3.7768e+04 -7.0527e+04 -7.1249e+04 -7.6531e+04 -7.5026e+04 -2.7398e+05

connect-4 mean -2.3699e+04 -6.4899e+04 -1.0610e+05 -1.0840e+05 -4.6986e+04 -5.0457e+04 -7.4927e+04 -6.5703e+04 -1.0101e+05 -1.0174e+05 -1.0698e+05 -1.0611e+05 -1.2762e+05
(Truth: -1.0908e+05) stdev 568.906 421.356 400.485 369.317 503.563 497.894 452.002 295.002 578.151 367.587 597.873 345.889 1409.019

direct 454.685 -7.5471e+04 -1.8300e+05 -2.0549e+05 -4.4821e+04 -5.6541e+04 -9.9056e+04 -7.9149e+04 -1.7718e+05 -1.7942e+05 -1.9256e+05 -1.8470e+05 -2.7400e+05
covtype.binary mean -1573.697 -7.7408e+04 -2.1320e+05 -2.2940e+05 -4.5849e+04 -5.7678e+04 -1.0744e+05 -8.1358e+04 -2.0682e+05 -2.0887e+05 -2.2227e+05 -2.1466e+05 -2.5115e+05

(Truth: -2.3453e+05) stdev 145.385 266.982 444.006 292.190 165.233 236.740 318.370 202.985 294.547 437.749 385.139 411.452 746.069
direct 341.659 -4.8310e+04 -1.1263e+05 -1.2348e+05 -5505.843 -8065.583 -6.6485e+04 -5.1014e+04 -1.0455e+05 -1.0472e+05 -1.1730e+05 -1.1328e+05 -2.7403e+05

creditcard mean -1.1073e+04 -6.0359e+04 -1.4129e+05 -1.5376e+05 -1.5881e+04 -1.7998e+04 -8.4080e+04 -6.3407e+04 -1.3001e+05 -1.3049e+05 -1.4893e+05 -1.4219e+05 -1.8841e+05
(Truth: -1.6062e+05) stdev 434.569 403.245 311.751 410.784 332.249 270.735 393.787 312.231 619.893 524.833 422.812 490.900 993.545

direct 421.273 -1.0306e+05 -2.0277e+05 -2.2146e+05 -5.4183e+04 -7.1190e+04 -1.2937e+05 -1.1286e+05 -1.9334e+05 -1.9592e+05 -2.0948e+05 -2.0520e+05 -2.7409e+05
diamonds mean -5727.127 -1.0447e+05 -2.3077e+05 -2.4728e+05 -5.4827e+04 -7.1434e+04 -1.4079e+05 -1.1623e+05 -2.1795e+05 -2.2186e+05 -2.3681e+05 -2.3335e+05 -2.5959e+05

(Truth: -2.5535e+05) stdev 1516.542 135.963 521.442 349.360 74.216 143.469 406.337 203.733 279.037 416.968 369.196 529.177 519.439
direct 459.655 -1.2060e+05 -1.9345e+05 -2.1402e+05 -8.5792e+04 -9.4616e+04 -1.4038e+05 -1.2498e+05 -1.8243e+05 -1.8454e+05 -2.0046e+05 -1.9544e+05 -2.7418e+05

hls4ml lhc jets hlf mean -1.4217e+04 -1.2444e+05 -2.2878e+05 -2.4669e+05 -8.6584e+04 -9.5549e+04 -1.5501e+05 -1.3128e+05 -2.1627e+05 -2.1944e+05 -2.3418e+05 -2.3048e+05 -2.5693e+05
(Truth: -2.5519e+05) stdev 5180.807 168.923 428.815 521.642 181.025 286.255 348.394 187.203 395.036 490.716 591.908 509.586 557.662

direct 383.970 -6.3419e+04 -1.4837e+05 -1.6726e+05 -2.9363e+04 -3.6906e+04 -8.6161e+04 -6.5058e+04 -1.4354e+05 -1.4448e+05 -1.5183e+05 -1.4858e+05 -2.7398e+05
ijcnn1 mean -4437.291 -6.8540e+04 -1.7942e+05 -1.9834e+05 -3.3060e+04 -4.0752e+04 -9.5012e+04 -7.0601e+04 -1.7317e+05 -1.7441e+05 -1.8380e+05 -1.7979e+05 -2.2905e+05

(Truth: -2.0690e+05) stdev 275.867 279.797 311.374 542.992 242.672 198.186 240.138 226.032 547.534 508.348 341.781 429.496 987.895
direct 296.325 -2.7786e+04 -4.1640e+04 -4.5929e+04 -1.5128e+04 -1.6156e+04 -3.1709e+04 -2.8248e+04 -3.6832e+04 -3.7273e+04 -4.2850e+04 -4.1805e+04 -2.7402e+05

jannis mean -5.2013e+04 -6.5125e+04 -6.8943e+04 -6.9009e+04 -5.7267e+04 -5.7942e+04 -6.7747e+04 -6.5652e+04 -6.8008e+04 -6.8185e+04 -6.8912e+04 -6.9032e+04 -7.0266e+04
(Truth: -6.9136e+04) stdev 886.299 379.169 369.218 346.723 352.154 410.528 550.154 511.594 415.911 611.777 350.670 393.567 2208.360

direct 151.154 -7546.272 -1.5399e+04 -1.6919e+04 -4644.935 -4884.715 -9031.648 -7203.401 -1.4539e+04 -1.4607e+04 -1.5948e+04 -1.5278e+04 -6.9404e+04
phishing mean -1.0225e+04 -1.4283e+04 -2.1815e+04 -2.1966e+04 -1.2081e+04 -1.2248e+04 -1.7629e+04 -1.3705e+04 -2.1023e+04 -2.1340e+04 -2.2070e+04 -2.1750e+04 -2.7897e+04

(Truth: -2.2161e+04) stdev 271.929 165.892 236.294 124.941 173.470 161.635 324.359 221.586 168.240 235.960 270.588 270.082 1218.773
direct 307.826 -1.3566e+04 -1.7202e+04 -1.9709e+04 -1.2955e+04 -1.2964e+04 -1.4444e+04 -1.3584e+04 -1.6714e+04 -1.6733e+04 -1.7858e+04 -1.7221e+04 -2.7397e+05

santander mean -3.0536e+04 -3.0530e+04 -3.0590e+04 -3.0602e+04 -3.0356e+04 -3.0665e+04 -3.0547e+04 -3.0496e+04 -3.0505e+04 -3.0482e+04 -3.0614e+04 -3.0596e+04 -2.9627e+04
(Truth: -3.0587e+04) stdev 349.817 256.391 233.420 78.077 263.342 346.744 158.995 262.360 144.463 197.558 216.051 194.757 2077.336

direct 303.107 -3.5026e+04 -6.6638e+04 -7.4849e+04 -1.6938e+04 -1.6880e+04 -5.8840e+04 -3.9104e+04 -6.0524e+04 -6.0504e+04 -7.4383e+04 -6.7209e+04 -2.7407e+05
sensit vehicle mean -1.6869e+04 -5.0615e+04 -9.1377e+04 -1.0125e+05 -3.2075e+04 -3.2006e+04 -8.4627e+04 -5.5723e+04 -8.3499e+04 -8.3569e+04 -1.0121e+05 -9.2444e+04 -1.3117e+05

(Truth: -1.0693e+05) stdev 648.447 381.913 466.330 408.605 493.197 433.066 453.620 424.658 326.877 519.073 388.681 209.741 1947.397
direct 324.318 -5.8628e+04 -9.9759e+04 -1.1045e+05 -2.7787e+04 -3.2078e+04 -6.8436e+04 -6.0556e+04 -9.2545e+04 -9.3327e+04 -1.0204e+05 -1.0027e+05 -2.7402e+05

sensorless mean -1.4062e+04 -7.3828e+04 -1.3309e+05 -1.4804e+05 -3.8055e+04 -4.2556e+04 -8.7991e+04 -7.6170e+04 -1.2119e+05 -1.2270e+05 -1.3715e+05 -1.3381e+05 -1.9029e+05
(Truth: -1.6041e+05) stdev 481.322 375.226 505.657 509.003 418.061 466.170 526.298 336.009 537.470 415.620 516.629 558.935 612.741

direct 670.659 -1.3720e+05 -1.5112e+05 -1.5163e+05 -1.2492e+05 -1.3410e+05 -1.4324e+05 -1.3751e+05 -1.5108e+05 -1.5113e+05 -1.5116e+05 -1.5110e+05 -1.5242e+05
skin nonskin mean -1.2153e+05 -1.5100e+05 -1.5209e+05 -1.5210e+05 -1.5121e+05 -1.5057e+05 -1.5094e+05 -1.4701e+05 -1.5208e+05 -1.5209e+05 -1.5210e+05 -1.5209e+05 -1.5188e+05

(Truth: -1.5209e+05) stdev 3331.136 216.693 88.393 46.649 460.113 376.684 103.969 177.445 59.609 82.396 62.354 75.228 35.722
direct 338.427 -4.2166e+04 -6.0891e+04 -6.7960e+04 -2.2879e+04 -2.4206e+04 -4.7951e+04 -4.3183e+04 -5.4971e+04 -5.5151e+04 -6.5374e+04 -6.1785e+04 -2.7402e+05

volkert mean -4.1148e+04 -7.8323e+04 -9.1063e+04 -9.4739e+04 -5.8289e+04 -5.9336e+04 -8.7125e+04 -7.9970e+04 -8.5530e+04 -8.5871e+04 -9.4870e+04 -9.1754e+04 -1.0588e+05
(Truth: -9.6886e+04) stdev 579.315 507.691 341.673 484.464 591.008 309.115 416.266 333.149 185.948 607.340 288.294 575.722 2461.194

direct 361.319 -2.6552e+04 -4.9498e+04 -5.4942e+04 -1.1777e+04 -1.1802e+04 -4.0392e+04 -2.6333e+04 -4.4252e+04 -4.4287e+04 -5.6812e+04 -4.9758e+04 -2.4603e+05
w8a mean -3.4601e+04 -5.0667e+04 -6.8623e+04 -7.0755e+04 -4.0437e+04 -3.9649e+04 -6.3680e+04 -5.0483e+04 -6.6417e+04 -6.6171e+04 -7.1034e+04 -6.8944e+04 -8.7256e+04

(Truth: -7.1276e+04) stdev 774.386 368.411 373.839 138.973 557.760 897.720 389.723 326.609 343.511 511.357 192.012 270.281 1624.215
direct 332.117 -3.0807e+04 -4.2182e+04 -4.6458e+04 -1038.983 -1223.322 -3.8153e+04 -3.0646e+04 -3.3514e+04 -3.3538e+04 -4.6017e+04 -4.2153e+04 -2.7404e+05

yolanda mean -3.5868e+04 -6.2223e+04 -6.8410e+04 -6.9708e+04 -3.6599e+04 -3.6674e+04 -6.8768e+04 -6.2522e+04 -6.3272e+04 -6.3059e+04 -6.9614e+04 -6.8360e+04 -7.2320e+04
(Truth: -6.9879e+04) stdev 520.728 321.563 325.097 298.217 882.671 909.311 563.883 642.617 356.761 479.674 338.272 437.642 2335.977

Table 3
Log determinant estimation data for direct and indirect preconditioners on each dataset, for

µ = 10−6

[20] L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse preconditionings
i. theory, SIAM Journal on Matrix Analysis and Applications, 14 (1993), pp. 45–58, https:
//doi.org/10.1137/0614004.

[21] K. Makarychev, A. Reddy, and L. Shan, Improved guarantees for k-means++ and k-
means++ parallel, in Proceedings of the 34th International Conference on Neural Infor-
mation Processing Systems, 2020, https://dl.acm.org/doi/10.5555/3495724.3497078.

[22] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on Comput-
ing, 24 (1995), pp. 227–234, https://doi.org/10.1137/S0097539792240406.

[23] F. Schäfer, M. Katzfuss, and H. Owhadi, Sparse Cholesky factorization by Kullback–Leibler
minimization, SIAM Journal on Scientific Computing, 43 (2021), pp. A2019–A2046, https:
//doi.org/10.1137/20M1336254.

[24] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond, The MIT Press, 2001, https://doi.org/10.7551/mitpress/
4175.001.0001.

[25] Y. Sun and M. L. Stein, Statistically and computationally efficient estimating equations
for large spatial datasets, Journal of Computational and Graphical Statistics, 25 (2016),
pp. 187–208, https://doi.org/10.1080/10618600.2014.975230.

[26] K.-C. Toh and L. N. Trefethen, The Chebyshev polynomials of a matrix, SIAM Journal

https://doi.org/10.1137/0614004
https://doi.org/10.1137/0614004
https://dl.acm.org/doi/10.5555/3495724.3497078
https://doi.org/10.1137/S0097539792240406
https://doi.org/10.1137/20M1336254
https://doi.org/10.1137/20M1336254
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.1080/10618600.2014.975230

EVERYTHING IS VECCHIA 23

name quantity Frangella RPC+D RPC+V 1
4 RPC+V 1

3 CPC+D FPS+D GKL+D SDS+D CPC+V 1
4 FPS+V 1

4 GKL+V 1
4 SDS+V 1

4 Diaz
direct 334.926 -6.6994e+04 -1.4523e+05 -1.6630e+05 -3.1831e+04 -3.9126e+04 -8.5102e+04 -6.7843e+04 -1.3577e+05 -1.3742e+05 -1.5314e+05 -1.4541e+05 -4.5689e+05

ACSIncome mean -3339.010 -7.1076e+04 -1.5813e+05 -1.8458e+05 -3.4848e+04 -4.2211e+04 -9.0301e+04 -7.2100e+04 -1.4658e+05 -1.4879e+05 -1.6818e+05 -1.5829e+05 -3.7556e+05
(Truth: -2.6234e+05) stdev 177.103 225.613 334.239 370.668 315.055 226.360 221.193 161.919 291.461 418.628 402.563 285.111 1764.066

direct 369.589 -6.6741e+04 -1.3096e+05 -1.4857e+05 -4.7225e+04 -5.4100e+04 -7.7299e+04 -6.9607e+04 -1.2418e+05 -1.2631e+05 -1.3508e+05 -1.3225e+05 -4.5690e+05
Airlines DepDelay 1M mean -2219.980 -6.9684e+04 -1.4299e+05 -1.6670e+05 -4.9502e+04 -5.6529e+04 -8.1076e+04 -7.2810e+04 -1.3461e+05 -1.3728e+05 -1.4776e+05 -1.4445e+05 -3.9373e+05
(Truth: -2.5610e+05) stdev 157.861 189.842 320.845 417.094 324.034 168.595 189.575 244.076 288.810 350.053 429.548 319.384 1040.703

direct 547.858 -1.9591e+05 -4.2275e+05 -4.2967e+05 -1.0301e+05 -1.0851e+05 -3.9891e+05 -3.7083e+05 -4.1893e+05 -4.1994e+05 -4.0490e+05 -3.6210e+05 -4.5720e+05
COMET MC SAMPLE mean -8.8374e+04 -2.1578e+05 -4.2558e+05 -4.3465e+05 -1.6477e+05 -1.5557e+05 -4.0923e+05 -3.9051e+05 -4.2090e+05 -4.2212e+05 -4.1510e+05 -3.7666e+05 -4.4882e+05
(Truth: -4.4539e+05) stdev 2.2368e+04 3445.151 188.708 326.777 1.0672e+04 9146.089 252.291 463.163 101.984 134.920 374.004 258.163 1453.342

direct 366.155 -8.8884e+04 -2.1700e+05 -2.4397e+05 -3.8238e+04 -4.0002e+04 -1.2878e+05 -1.0010e+05 -2.0278e+05 -2.0377e+05 -2.2686e+05 -2.2049e+05 -4.5696e+05
Click prediction small mean -3235.334 -9.0198e+04 -2.2572e+05 -2.5900e+05 -3.9596e+04 -4.1348e+04 -1.3150e+05 -1.0154e+05 -2.0966e+05 -2.1066e+05 -2.3686e+05 -2.3007e+05 -4.1120e+05
(Truth: -3.3888e+05) stdev 563.732 176.713 286.028 346.910 139.272 99.851 163.150 151.423 304.025 380.168 339.326 282.470 907.353

direct 307.249 -3.5030e+04 -5.8030e+04 -6.3898e+04 -1.4254e+04 -1.3959e+04 -3.9828e+04 -3.5727e+04 -5.1104e+04 -5.1097e+04 -5.9605e+04 -5.8375e+04 -4.5691e+05
HIGGS mean -3.2232e+04 -6.8211e+04 -9.3872e+04 -9.6006e+04 -4.3265e+04 -4.2915e+04 -7.7337e+04 -6.9536e+04 -8.7908e+04 -8.7871e+04 -9.4975e+04 -9.3767e+04 -1.3850e+05

(Truth: -9.6970e+04) stdev 502.085 535.646 301.267 226.850 559.836 605.775 510.127 567.065 224.794 460.271 478.466 697.309 2760.891
direct 334.968 -3.1735e+04 -5.2121e+04 -5.6861e+04 -4475.069 -4685.466 -3.7995e+04 -3.2519e+04 -4.8036e+04 -4.8034e+04 -5.4116e+04 -5.2450e+04 -4.5694e+05

MNIST mean -4.2762e+04 -6.4101e+04 -7.3891e+04 -7.4531e+04 -4.5171e+04 -4.5515e+04 -7.0901e+04 -6.4913e+04 -7.2903e+04 -7.3068e+04 -7.4276e+04 -7.4009e+04 -9.6383e+04
(Truth: -7.4662e+04) stdev 557.866 356.698 358.959 279.699 645.415 454.630 204.412 490.663 394.362 370.578 336.795 238.108 3240.331

direct 344.779 -4.8381e+04 -1.0388e+05 -1.1662e+05 -3.2677e+04 -3.7707e+04 -5.6975e+04 -4.8880e+04 -9.9519e+04 -1.0057e+05 -1.0684e+05 -1.0412e+05 -4.5687e+05
Medical-Appointment mean -7746.806 -5.8306e+04 -1.3083e+05 -1.4936e+05 -4.0540e+04 -4.5905e+04 -6.9541e+04 -5.8959e+04 -1.2373e+05 -1.2550e+05 -1.3570e+05 -1.3100e+05 -3.1756e+05
(Truth: -1.7561e+05) stdev 358.068 353.878 620.335 495.720 295.938 267.868 324.816 273.675 407.336 358.542 464.972 613.920 2255.523

direct 436.215 -1.3320e+05 -1.7755e+05 -1.9434e+05 -8.6624e+04 -9.5537e+04 -1.5447e+05 -1.4190e+05 -1.6252e+05 -1.6369e+05 -1.8882e+05 -1.8234e+05 -4.5723e+05
MiniBoonNE mean -9048.227 -1.3624e+05 -1.8619e+05 -2.0865e+05 -8.8510e+04 -9.7397e+04 -1.5905e+05 -1.4534e+05 -1.6853e+05 -1.6977e+05 -2.0050e+05 -1.9216e+05 -4.1286e+05

(Truth: -3.1142e+05) stdev 1452.024 134.491 367.541 384.217 113.615 301.521 219.938 285.084 220.091 259.763 332.723 211.822 852.002
direct 300.172 -3.2956e+04 -4.8943e+04 -5.4269e+04 -1.2999e+04 -1.3009e+04 -4.3460e+04 -3.4469e+04 -4.1149e+04 -4.1151e+04 -5.4494e+04 -4.9795e+04 -4.5697e+05

YearPredictionMSD mean -3.1253e+04 -6.2062e+04 -7.6970e+04 -7.9810e+04 -4.1773e+04 -4.1668e+04 -7.5364e+04 -6.4397e+04 -7.1107e+04 -7.1185e+04 -8.0519e+04 -7.7458e+04 -1.0941e+05
(Truth: -8.1160e+04) stdev 480.687 578.636 360.989 353.342 570.798 472.019 259.345 324.944 353.551 315.151 397.085 256.223 3129.016

direct 390.780 -3.6104e+04 -7.1521e+04 -7.9387e+04 -1.0522e+04 -1.2427e+04 -4.4065e+04 -3.6689e+04 -6.5671e+04 -6.5892e+04 -7.4602e+04 -7.1924e+04 -4.5344e+05
a9a mean -2.2477e+04 -5.9566e+04 -1.0027e+05 -1.0451e+05 -3.1107e+04 -3.2823e+04 -7.3046e+04 -6.0120e+04 -9.3371e+04 -9.3642e+04 -1.0268e+05 -1.0060e+05 -1.9266e+05

(Truth: -1.0701e+05) stdev 409.895 484.529 519.729 258.743 458.462 413.731 464.814 193.123 485.078 602.851 265.019 403.412 3923.541
direct 397.433 -9.4360e+04 -1.7490e+05 -1.9781e+05 -4.9535e+04 -6.1419e+04 -1.2621e+05 -1.0582e+05 -1.5929e+05 -1.6220e+05 -1.9140e+05 -1.8131e+05 -3.7706e+05

cadata mean -2.1145e+04 -9.4556e+04 -1.7684e+05 -2.0203e+05 -5.4495e+04 -6.3669e+04 -1.2655e+05 -1.0603e+05 -1.6058e+05 -1.6358e+05 -1.9500e+05 -1.8354e+05 -3.5621e+05
(Truth: -3.1817e+05) stdev 6594.422 95.269 208.381 201.983 615.619 525.068 167.193 154.528 155.223 245.662 218.657 198.393 718.995

direct 412.913 -9.8517e+04 -2.1388e+05 -2.4249e+05 -5.7484e+04 -7.1390e+04 -1.3440e+05 -1.1233e+05 -2.0075e+05 -2.0429e+05 -2.3121e+05 -2.2031e+05 -4.5697e+05
cod-rna mean -2170.166 -9.8774e+04 -2.1810e+05 -2.5110e+05 -5.8303e+04 -7.1719e+04 -1.3511e+05 -1.1273e+05 -2.0393e+05 -2.0775e+05 -2.3604e+05 -2.2506e+05 -4.2909e+05

(Truth: -3.7399e+05) stdev 257.941 155.469 122.478 328.796 152.917 107.675 140.256 132.764 134.915 170.341 382.938 267.321 744.061
direct 436.867 -3.7352e+04 -7.4978e+04 -8.2749e+04 -2.3940e+04 -2.6807e+04 -4.2145e+04 -3.7768e+04 -7.0529e+04 -7.1250e+04 -7.6533e+04 -7.5028e+04 -4.5689e+05

connect-4 mean -2.3712e+04 -6.4730e+04 -1.0593e+05 -1.0839e+05 -4.6918e+04 -5.0381e+04 -7.4903e+04 -6.5520e+04 -1.0065e+05 -1.0168e+05 -1.0692e+05 -1.0597e+05 -1.6868e+05
(Truth: -1.0911e+05) stdev 460.095 346.412 460.874 512.058 369.482 479.355 519.039 318.451 376.953 512.281 361.080 334.645 3180.749

direct 454.685 -7.5474e+04 -1.8452e+05 -2.1173e+05 -4.4821e+04 -5.6541e+04 -9.9192e+04 -7.9153e+04 -1.7828e+05 -1.8066e+05 -1.9643e+05 -1.8642e+05 -4.5691e+05
covtype.binary mean -1515.947 -7.7275e+04 -1.9290e+05 -2.2375e+05 -4.5772e+04 -5.7766e+04 -1.0202e+05 -8.1048e+04 -1.8582e+05 -1.8852e+05 -2.0700e+05 -1.9478e+05 -4.1187e+05

(Truth: -3.0128e+05) stdev 106.080 333.920 347.207 410.092 138.760 210.485 141.386 232.473 284.242 215.556 339.521 414.900 875.215
direct 341.659 -4.8310e+04 -1.1903e+05 -1.3213e+05 -5505.874 -8065.619 -6.7241e+04 -5.1016e+04 -1.1077e+05 -1.1088e+05 -1.2440e+05 -1.1964e+05 -4.5693e+05

creditcard mean -1.1342e+04 -6.0106e+04 -1.4371e+05 -1.6122e+05 -1.6027e+04 -1.8136e+04 -8.2936e+04 -6.3388e+04 -1.3286e+05 -1.3315e+05 -1.4961e+05 -1.4473e+05 -2.9186e+05
(Truth: -1.7941e+05) stdev 343.457 348.329 448.763 672.172 292.922 330.411 351.531 321.906 510.583 289.976 393.057 448.742 1990.670

direct 421.274 -1.0300e+05 -2.1157e+05 -2.4149e+05 -5.4183e+04 -7.1191e+04 -1.2991e+05 -1.1290e+05 -2.0168e+05 -2.0439e+05 -2.2164e+05 -2.1453e+05 -4.5699e+05
diamonds mean -5266.104 -1.0321e+05 -2.1585e+05 -2.5042e+05 -5.4970e+04 -7.1427e+04 -1.3048e+05 -1.1329e+05 -2.0502e+05 -2.0816e+05 -2.2727e+05 -2.1907e+05 -4.2920e+05

(Truth: -3.7438e+05) stdev 1752.397 97.815 237.677 281.260 141.189 80.403 138.377 114.769 232.663 249.523 239.662 237.197 574.169
direct 459.656 -1.1882e+05 -1.9447e+05 -2.1939e+05 -8.5794e+04 -9.4620e+04 -1.4113e+05 -1.2505e+05 -1.8330e+05 -1.8545e+05 -2.0471e+05 -1.9761e+05 -4.5709e+05

hls4ml lhc jets hlf mean -1.5747e+04 -1.1979e+05 -1.9946e+05 -2.2821e+05 -8.6371e+04 -9.5245e+04 -1.4243e+05 -1.2594e+05 -1.8728e+05 -1.8966e+05 -2.1089e+05 -2.0298e+05 -4.2478e+05
(Truth: -3.5574e+05) stdev 5824.100 150.941 294.245 295.252 146.448 217.592 147.496 131.183 249.787 267.296 266.668 239.378 1066.903

direct 383.971 -6.5152e+04 -1.4894e+05 -1.6942e+05 -2.9363e+04 -3.6906e+04 -8.6202e+04 -6.4701e+04 -1.4400e+05 -1.4496e+05 -1.5275e+05 -1.4926e+05 -4.5689e+05
ijcnn1 mean -4422.527 -7.0536e+04 -1.6449e+05 -1.9035e+05 -3.3057e+04 -4.0633e+04 -9.3186e+04 -6.9805e+04 -1.5850e+05 -1.5976e+05 -1.6974e+05 -1.6510e+05 -3.6750e+05

(Truth: -2.4187e+05) stdev 349.688 178.829 342.235 397.451 262.999 199.097 147.766 271.532 527.452 209.524 379.608 238.699 1854.956
direct 296.325 -2.7786e+04 -4.1640e+04 -4.5930e+04 -1.5128e+04 -1.6157e+04 -3.1709e+04 -2.8248e+04 -3.6832e+04 -3.7273e+04 -4.2850e+04 -4.1805e+04 -4.5693e+05

jannis mean -5.2033e+04 -6.5210e+04 -6.8858e+04 -6.8964e+04 -5.7427e+04 -5.7999e+04 -6.7692e+04 -6.5661e+04 -6.8255e+04 -6.7953e+04 -6.9049e+04 -6.9016e+04 -7.0502e+04
(Truth: -6.9138e+04) stdev 665.885 518.825 395.415 247.973 483.120 565.781 259.353 493.460 392.679 216.097 246.503 363.405 2999.995

direct 151.154 -7546.314 -1.5399e+04 -1.6919e+04 -4644.952 -4884.733 -9031.730 -7203.437 -1.4539e+04 -1.4607e+04 -1.5949e+04 -1.5278e+04 -1.1578e+05
phishing mean -1.0322e+04 -1.4124e+04 -2.1811e+04 -2.2140e+04 -1.2047e+04 -1.2236e+04 -1.7579e+04 -1.3675e+04 -2.1162e+04 -2.1158e+04 -2.1934e+04 -2.1679e+04 -3.6837e+04

(Truth: -2.2171e+04) stdev 231.541 238.905 200.222 250.855 234.340 233.184 271.942 323.619 169.899 213.493 142.976 234.861 2344.356
direct 307.826 -1.3566e+04 -1.7202e+04 -1.9709e+04 -1.2955e+04 -1.2964e+04 -1.4444e+04 -1.3584e+04 -1.6714e+04 -1.6733e+04 -1.7858e+04 -1.7221e+04 -4.5688e+05

santander mean -3.0440e+04 -3.0576e+04 -3.0654e+04 -3.0551e+04 -3.0514e+04 -3.0704e+04 -3.0675e+04 -3.0533e+04 -3.0528e+04 -3.0502e+04 -3.0564e+04 -3.0591e+04 -2.8391e+04
(Truth: -3.0587e+04) stdev 433.564 169.721 276.448 128.227 290.090 261.343 250.641 229.985 243.896 254.088 174.946 197.552 3990.427

direct 303.107 -3.5026e+04 -6.6665e+04 -7.4920e+04 -1.6938e+04 -1.6880e+04 -5.8878e+04 -3.9105e+04 -6.0544e+04 -6.0525e+04 -7.4480e+04 -6.7239e+04 -4.5698e+05
sensit vehicle mean -1.6931e+04 -5.0503e+04 -8.9697e+04 -9.9955e+04 -3.1806e+04 -3.1871e+04 -8.3055e+04 -5.5631e+04 -8.2297e+04 -8.2274e+04 -9.9841e+04 -9.0643e+04 -1.9737e+05

(Truth: -1.0905e+05) stdev 720.674 234.577 551.212 359.062 312.934 553.820 363.404 507.369 229.431 277.419 443.732 359.519 4303.481
direct 324.318 -5.8629e+04 -9.9769e+04 -1.1047e+05 -2.7787e+04 -3.2078e+04 -6.8439e+04 -6.0557e+04 -9.2551e+04 -9.3333e+04 -1.0205e+05 -1.0028e+05 -4.5693e+05

sensorless mean -1.4185e+04 -7.3525e+04 -1.3148e+05 -1.4621e+05 -3.7980e+04 -4.2453e+04 -8.7908e+04 -7.6230e+04 -1.2005e+05 -1.2151e+05 -1.3552e+05 -1.3238e+05 -2.8707e+05
(Truth: -1.6200e+05) stdev 518.689 258.822 670.245 619.212 191.474 376.271 427.821 283.802 484.448 337.021 689.318 684.920 1861.642

direct 671.056 -1.5940e+05 -2.3108e+05 -2.3197e+05 -1.2799e+05 -1.4601e+05 -2.0719e+05 -1.8567e+05 -2.4367e+05 -2.3394e+05 -2.0811e+05 -1.9043e+05 -2.5390e+05
skin nonskin mean -1.2103e+05 -1.7151e+05 -2.3337e+05 -2.3362e+05 -2.1310e+05 -1.8955e+05 -2.1772e+05 -2.0079e+05 -2.4914e+05 -2.4071e+05 -2.1783e+05 -2.0295e+05 -2.2800e+05

(Truth: -2.5183e+05) stdev 3247.826 3765.408 117.245 226.841 2038.242 6774.323 255.751 414.794 184.460 318.226 163.896 626.779 4170.811
direct 338.427 -4.2167e+04 -6.0892e+04 -6.7961e+04 -2.2879e+04 -2.4206e+04 -4.7952e+04 -4.3184e+04 -5.4971e+04 -5.5151e+04 -6.5375e+04 -6.1786e+04 -4.5693e+05

volkert mean -4.0987e+04 -7.8266e+04 -9.1088e+04 -9.5084e+04 -5.8127e+04 -5.9161e+04 -8.7457e+04 -8.0018e+04 -8.5714e+04 -8.5752e+04 -9.4722e+04 -9.1562e+04 -1.2494e+05
(Truth: -9.6896e+04) stdev 563.502 391.531 379.599 401.135 700.989 603.241 476.920 393.490 491.795 430.155 634.315 471.677 1534.453

direct 361.320 -2.6552e+04 -4.9510e+04 -5.4966e+04 -1.1777e+04 -1.1803e+04 -4.0401e+04 -2.6333e+04 -4.4262e+04 -4.4297e+04 -5.6846e+04 -4.9767e+04 -4.1028e+05
w8a mean -3.4250e+04 -5.0760e+04 -6.8614e+04 -7.0929e+04 -4.0526e+04 -4.0468e+04 -6.3483e+04 -5.0441e+04 -6.6345e+04 -6.6174e+04 -7.1049e+04 -6.8909e+04 -1.1607e+05

(Truth: -7.1363e+04) stdev 655.734 252.284 295.598 221.693 1352.892 590.025 494.250 462.422 348.973 320.349 347.014 390.710 1691.824
direct 332.117 -3.0807e+04 -4.2183e+04 -4.6458e+04 -1039.005 -1223.344 -3.8153e+04 -3.0646e+04 -3.3514e+04 -3.3538e+04 -4.6017e+04 -4.2153e+04 -4.5695e+05

yolanda mean -3.5430e+04 -6.2058e+04 -6.8527e+04 -6.9528e+04 -3.6266e+04 -3.6470e+04 -6.8629e+04 -6.2204e+04 -6.3228e+04 -6.3035e+04 -6.9517e+04 -6.8353e+04 -7.9750e+04
(Truth: -6.9883e+04) stdev 603.970 588.432 404.264 435.399 820.022 506.223 445.619 363.215 356.771 254.707 261.273 308.942 2929.062

Table 4
Log determinant estimation data for direct and indirect preconditioners on each dataset, for

µ = 10−10

on Matrix Analysis and Applications, 20 (1998), pp. 400–419, https://doi.org/10.1137/
S0895479896303739.

[27] J. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Transactions on
Information Theory, 50 (2004), pp. 2231–2242, https://doi.org/10.1109/TIT.2004.834793.

[28] S. Ubaru, J. Chen, and Y. Saad, Fast estimation of $tr(f(a))$ via stochastic lanczos quadra-
ture, SIAM Journal on Matrix Analysis and Applications, 38 (2017), pp. 1075–1099,
https://doi.org/10.1137/16M1104974.

[29] A. V. Vecchia, Estimation and model identification for continuous spatial processes, Journal
of the Royal Statistical Society Series B: Statistical Methodology, 50 (1988), pp. 297–312,
https://doi.org/10.1111/j.2517-6161.1988.tb01729.x.

[30] A. Y. Yeremin, L. Y. Kolotilina, and A. Nikishin, Factorized sparse approximate inverse
preconditionings. III. Iterative construction of preconditioners, Journal of Mathematical
Sciences, 101 (2000), pp. 3237–3254.

[31] S. Zhao, T. Xu, H. Huang, E. Chow, and Y. Xi, An adaptive factorized Nyström precondi-
tioner for regularized kernel matrices, SIAM Journal on Scientific Computing, 46 (2024),
pp. A2351–A2376, https://doi.org/10.1137/23M1565139.

Appendix A. Proof of Kaporin optimality theory. This section provides

https://doi.org/10.1137/S0895479896303739
https://doi.org/10.1137/S0895479896303739
https://doi.org/10.1109/TIT.2004.834793
https://doi.org/10.1137/16M1104974
https://doi.org/10.1111/j.2517-6161.1988.tb01729.x
https://doi.org/10.1137/23M1565139

24 E. KAMINETZ & R.J. WEBBER

a few proofs deferred from the main text.

A.1. Sparse approximation characterization. This section provides a linear
algebraic characterization of the Vecchia approximation. We are not aware of this
characterization appearing elsewhere.

Proposition A.1 (Vecchia characterization). For any positive-semidefinite ma-

trix A ∈ Cn×n, the Vecchia approximation Â = Ĉ−1D̂Ĉ−∗ with sparsity pattern
{Si}ni=1 is characterized by

(A.1)


ei − Ĉ(i, ·)∗ ∈ argmin

v∈span{ej}j∈Si

dA(ei,v), 1 ≤ i ≤ n,

D̂(i, i) = min
v∈span{ej}j∈Si

dA(ei,v), 1 ≤ i ≤ n.

In contrast, the inverse Cholesky decomposition A = C−1DC−∗ is characterized by

(A.2)


ei −C(i, ·)∗ ∈ argmin

v∈span{ej}j<i

dA(ei,v), 1 ≤ i ≤ n,

D(i, i) = min
v∈span{ej}j<i

dA(ei,v), 1 ≤ i ≤ n.

Proof. For any J ⊆ {1, . . . , i− 1} and v ∈ span{ej}j∈J, we can write

dA(ei,v)
2 =

[
−v(J)

1

]∗ [
A(J, J) A(J, i)
A(i, J) A(i, i)

] [
−v(J)

1

]
= A(i, i)−A(i, J)A(J, J)+A(J, i)

+
[
v(S)∗A(J, J)−A(i, J)

]
A(J, J)+

[
A(J, J)v(J)−A(J, i)

]
.

Here we are using the fact that A(J, i) ∈ rangeA(J, J) and consequently

A(J, J)A(J, J)+A(J, i) = A(J, i)

because A is positive-semidefinite. The minimizers of d(ei,v)
2 are characterized by

(A.3) v(J)∗A(J, J) = A(i, J),

and the minimum value of d(ei,v)
2 can be written using (A.3) as

(A.4) ∥ei − v∥2A = A(i, i)− v(J)∗A(J, i).

Thus, we have characterized the minimizers and minimum value of the distance.
Next we check that formulas (A.3) and (A.4) apply to the Vecchia approximation

and inverse Cholesky decomposition. Indeed, the vector v = ei − Ĉ(i, ·)∗ and diag-

onal entry D̂(i, i) in the Vecchia approximation perfectly match the characterization
(A.3)-(A.4) with J = Si. Now observe the matrix DC−∗ in the inverse Cholesky
decomposition is upper triangular, so

(A.5)

0 = (DC−∗)(i, 1 : i− 1)

= (CA)(i, 1 : i− 1)

= C(i, 1 : i− 1)A(1 : i− 1, 1 : i− 1) +A(i, 1 : i− 1).

Using (A.5), each diagonal entry satisfies

D(i, i) = C(i, ·)AC(i, ·)∗ = A(i, i) +C(i, 1 : i− 1)A(1 : i− 1, i)

EVERYTHING IS VECCHIA 25

Hence, the vector v = ei−C(i, ·)∗ and diagonal entry D(i, i) in the inverse Cholesky
decomposition match the characterization (A.3) and (A.4) with J = {1, . . . , i− 1}.

Last, if D and C are generated according to (A.2), then (A.3) showes that

C(i, ·)A(·, 1 : i− 1) = 0, for each i = 1, . . . , n,

so CA must be upper triangular. By multiplication with another upper triangular
matrix, CAC∗ is upper triangular also. By symmetry, CAC∗ must be diagonal, and
by (A.2) the diagonal entries are given by

D(i, i) = C(i, ·)AC(i, ·)∗, for each i = 1, . . . , n,

We conclude that A = C−∗DC−1 is an inverse Cholesky decomposition.

Proposition A.1 gives a sparse variational characterization of the Vecchia ap-
proximation. Identifying each row C(i, ·) and diagonal entry D(i, i) in the inverse
Cholesky decomposition via (A.2) is possible but expensive — it requires examining
and processing a large submatrix A(1 : i, 1 : i). It is cheaper to restrict the optimiza-
tion to a sparsity set Si ⊆ {1, . . . , i− 1} so the solution only depends on a submatrix
A({i} ∪ Si, {i} ∪ Si). This sparse optimization results in the Vecchia approximation.

A.2. Volume and trace formulas. The inverse Cholesky decomposition A =
C−∗DC−1 leads to pseudoinverse and volume formulas given in the next lemma.

Lemma A.2 (Pseudoinverse and volume formulas). Fix a positive-semidefinite
matrix with inverse Cholesky decomposition A = C−∗DC−1. Let Q be an orthonor-
mal basis for range(A) and set R = I(·,N), where N ⊆ {1, . . . , n} picks out the
nonzero elements of D. Then

(A.6) A+ = QQ∗CD+C∗QQ∗ and vol(A) =
vol(D)

det(R∗Q)2
.

Proof. The pseudoinverse A+ is characterized as the unique positive-semidefinite
matrix that satisfies A+x = 0 if x ⊥ range(Q) and AA+x = x if x ∈ range(Q).
We can check that these conditions are satisfied for A+ = QQ∗CD+C∗QQ∗. If
x ⊥ range(Q), we verify

QQ∗CD+C∗QQ∗x = 0.

If x ∈ range(Q), then x = C−∗Dy for some y ∈ Cn and we verify

AQQ∗CD+C∗QQ∗x = C−∗DD+C∗x = C−∗DD+C∗C−∗Dy = C−∗Dy = x.

This confirms the pseudoinverse formula in (A.6).
Next observe that R∗C−∗R is an upper triangular matrix with ones on the di-

agonal; hence, it has determinant one. Using the definition of Q as an orthonormal
basis for range(A) = range(C−∗R), it follows

1 = det
(
R∗C−∗R

)
= det

(
R∗QQ∗C−∗R

)
= det(R∗Q) det(Q∗C−∗R).

The volume of A is given by

vol(A) = vol
(
QQ∗C−∗RR∗DRR∗C−1QQ∗)

= det
(
Q∗C−∗RR∗DRR∗C−1Q

)
= det

(
Q∗C−∗R

)2
det
(
R∗DR

)
= vol(D)/ det(R∗Q)2.

26 E. KAMINETZ & R.J. WEBBER

This confirms the volume formula in (A.6) and completes the proof.

The next lemma gives explicit formulas for the trace and volume of AÂ+, where
Â is an approximation with the same range as A. In partial, when Â is the Vecchia
approximation with the same range as A, this guarantees tr

(
Â+A

)
= rank(A).

Lemma A.3 (Trace and volume formulas). When two inverse Cholesky decom-

positions A = C−1DC−∗ and Â = Ĉ−1D̂Ĉ−∗ share the same range, it follows

vol
(
Â+A

)
=

vol
(
A
)

vol
(
Â
) =

vol
(
D
)

vol
(
D̂
) and tr

(
Â+A

)
= tr

(
D̂+Ĉ∗AĈ

)
.

Proof. First we argue that range(D̂) = range(D). To that end, introduce the
affine subspace

Ai = {(a(1), . . . ,a(i− 1), 1, 0, . . . , 0) |a ∈ Ci−1}

for i = 1, . . . , n. Recall that C−∗ is upper triangular, and fix an index i ∈ {1, . . . , n}
for which D(i, i) > 0. Then the range of Â contains the vector C−∗(·, i) ∈ Ai and

it is also spanned by vectors Ĉ−∗(·, j) ∈ Aj for which D̂(j, j) > 0. Any set of
vectors x1, . . . ,xn with xj ∈ Aj is linearly independent, so it must be the case that

D̂(i, i) > 0. This argument shows range(D) ⊆ range(D̂) and reversing the argument

shows range(D̂) ⊆ range(D) also.

At this point, take an orthonormal basis Q for range
(
Â
)
= range(A) and an

orthonormal basis R for range
(
D̂
)
= range(D). To calculate vol

(
Â+A

)
, observe

vol
(
Â+A

)
= vol

(
QQ∗Â+QQ∗AQQ∗)

= det
(
Q∗Â+QQ∗AQ

)
= det

(
Q∗Â+Q

)
det
(
Q∗AQ

)
= vol

(
QQ∗Â+QQ∗) vol(QQ∗AQQ∗) = vol

(
Â+
)
vol
(
A
)
=

vol
(
A
)

vol
(
Â
) .

The last line uses the fact that vol
(
Â+
)
is the inverse of vol

(
Â
)
. Then apply the

exact formula for vol
(
A
)
and vol

(
Â
)
given in Lemma A.2:

vol
(
A
)

vol
(
Â
) =

vol
(
D
)
/ det(R∗Q)2

vol
(
D̂
)
/ det(R∗Q)2

=
vol
(
D
)

vol
(
D̂
) .

Similarly, apply the exact formula for the pseudoinverse Â in Lemma A.2 to calculate
tr(Â+A) as follows:

tr
(
Â+A

)
= tr

(
QQ∗ĈD̂+Ĉ∗QQ∗A

)
= tr

(
D̂+Ĉ∗QQ∗AQQ∗Ĉ

)
= tr

(
D̂+Ĉ∗AĈ

)
This completes the proof.

A.3. Proof of Theorem 3.2. We introduce an inverse Cholesky decomposi-
tion A = C−∗DC−1, and we will derive from first principles an inverse Cholesky
approximation Â = Ĉ−∗D̂Ĉ−1 that minimizes κKap, assuming κKap <∞.

To that end, we partition the indices {1, . . . , n} into a set of “good” indices
G = {i |D(i, i) > 0} and a set of “bad” indices B = {i |D(i, i) = 0}. The number of

EVERYTHING IS VECCHIA 27

good indices is r = rank(A) and the number of bad indices is n− r. We first consider

what happens to the bad indices i ∈ B. If A and Â have the same nullspace, we
establish the following chain of implications:

(i) D(i, i) = 0;

(ii) D̂(i, i) = 0;

(iii) AĈ(·, i) = 0.
We can check the implications as follows:

• (i) =⇒ (ii). If D(i, i) = 0, the vector C(·, i) is in the shared nullspace of

A = C−∗DC−1 and Â = Ĉ−∗D̂Ĉ−1, so consequently the vector Ĉ−1C(·, i)
is in the nullspace of D̂. Now recall that a lower triangular matrix with ones
on the diagonal is a mapping from Vi into Vi, where

Vi = {v ∈ Cn |v(i) = 1,v(j) = 0 for j < i}.

Since C(·, i) ∈ Vi and Ĉ−1 is lower triangular, it follows that Ĉ−1C(·, i) ∈ Vi.
Since Ĉ−1C(·, i) ∈ Vi lies in the nullspace of the nonnegative-valued diagonal

matrix D̂, it follows that D̂(i, i) = 0.

• (ii) =⇒ (iii). If D̂(i, i) = 0, the vector Ĉ(·, i) is in the shared nullspace of A

and Â.
Statements (ii) and (iii) imply that we must choose Ĉ(·, i) so that Ĉ(·, i)∗AĈ(·, i) = 0

and we must set D̂(i, i) = 0. By the variational characterization in Proposition A.1,

Ĉ(·, i) and D̂(i, i) are constructed in exactly this way in the Vecchia approximation.
Now we focus on the good indices i ∈ G. To that end, we rewrite κKap using the

volume and trace formulas from Lemma A.3 in the appendix.

κKap =

(
1
r tr
(
AÂ+

))r
vol
(
AÂ+

) =
vol
(
D̂
)
tr
(
D̂+Ĉ∗AĈ

)r
rr vol

(
D
) .

When we optimize Ĉ(·, i) to make
(
Ĉ∗AĈ

)
(i, i) as small as possible, Proposition A.1

shows that we are reproducing the column Ĉ(·, i) in the Vecchia approximation. Next

consider the impact of varying D̂(i, i) after Ĉ(·, i) is selected.

∂D̂(i,i) log(κKap) =
1

D̂(i, i)
−

r
(
Ĉ∗AĈ

)
(i, i)

D̂(i, i)2 tr
(
D̂+Ĉ∗AĈ

) .
The logarithmic derivative is negative for small D̂(i, i) and positive for large D̂(i, i),

and it achieves a zero value when D̂(i, i) =
(
Ĉ∗AĈ

)
(i, i). This matches the Vecchia

definition as well, due to Proposition A.1.
With the Vecchia parameter settings, it follows that κKap = vol(D̂)/ vol(D). We

can use the distance formulas in Proposition A.1 to rewrite κKap as given in (3.1) and
complete the proof.

Appendix B. Applications of the Kaporin condition number. The section
proves several upper bounds for linear algebra calculations in terms of the Kaporin
condition number.

28 E. KAMINETZ & R.J. WEBBER

B.1. Proof of Proposition 3.3. We can use the fact that b−Ax⋆ is orthogonal
to range(A) = range(Â) to calculate

∥x̂− x⋆∥A = ∥x0 + Â+[b−Ax0]− x⋆∥A
=
∥∥[I− Â+A

][
x0 − x⋆

]∥∥
A

=
∥∥[I−A1/2Â+A1/2

]
A1/2

[
x0 − x⋆

]∥∥
≤ ∥I−A1/2Â+A1/2∥∥x̂− x0∥A

The eigenvalues of A1/2Â+A1/2 are the eigenvalues of AÂ+, which we write as λ1 ≥
· · · ≥ λr > 0. Therefore,

∥x̂− x⋆∥A
∥x̂− x0∥A

≤ ∥I−A1/2Â+A1/2∥ = max
1≤i≤r

|1− λi|,

which gives a sharp upper bound.
By the concavity of x 7→ log x,

∑r
j=1 log(λj) is maximized when the eigenvalues

λj for j ̸= i are equal. By the normalization
∑r

j=1 λj = r, we obtain

− log(κKap) =

r∑
j=1

log(λj) ≤ log(λi) + (r − 1) log

(
r − λi

r − 1

)
.

Over the interval (0, r], we can bound log(x) from above by a concave quadratic that
passes through (1, 0) and (r, r

2 −
1
2r), so

log(λi) ≤ −1 + λi −
1

2r
(1− λi)

2.

Also, log(1 + x) ≤ x holds globally, so

(r − 1) log

(
r − λi

r − 1

)
= (r − 1) log

(
1 +

1− λi

r − 1

)
≤ 1− λi.

It follows that

− log(κKap) ≤ log(λi) + (r − 1) log

(
r − λi

r − 1

)
≤ − 1

2r
(1− λi)

2.

We conclude that (1− λi)
2 ≤ 2r log(κKap) for each i = 1, . . . , r, which completes the

proof.

B.2. Proof of Proposition 3.4. The starting point is a generic error bound
for PCG iterates [3, eq. (3.4)].

∥xt − x⋆∥A
∥x0 − x⋆∥A

≤ max
1≤i≤r

∣∣pt(λi)|.

Here, pt is any degree-t polynomial satisfying pt(0) = 1, and λ1 ≥ · · · ≥ λr are the

sorted positive eigenvalues of AÂ+. In the case of even t, we construct

pt(λ) =

t/2∏
i=1

(
1− λ

λi

)(
1− λ

λr+1−i

)
.

EVERYTHING IS VECCHIA 29

In the case of odd t, we set t⋆ = (t+ 1)/2 and construct

pt(λ) =

(
1− 2λ

λt⋆ + λr+1−t⋆

) (t−1)/2∏
i=1

(
1− λ

λi

)(
1− λ

λr+1−i

)
.

Now observe that

max
1≤i≤r

∣∣pt(λi)| = max
⌊t/2⌋≤i≤r+1−⌊t/2⌋

∣∣pt(λi)|,

and the right-hand side is bounded by the product of terms

max
λi≤λ≤λr+1−i

(
λ

λi
− 1

)(
1− λ

λr+1−i

)
=

(λi − λr+1−i)
2

4λiλr+1−i

and potentially a term

max
λt⋆≤λ≤λr+1−t⋆

∣∣∣∣1− 2λ

λt⋆ + λr+1−t⋆

∣∣∣∣ = λt⋆ − λr+1−t⋆

λt⋆ + λr+1−t⋆

≤ λt⋆ − λr+1−t⋆

2(λt⋆λr+1−t⋆)
1/2

,

where the last line follows from the arithmetic-geometric mean inequality

(λt⋆λr+1−t⋆)
1/2 ≤ λt⋆ + λr+1−t⋆

2
.

In the case of even t, we can use the arithmetic-geometric mean inequality twice to
write

t/2∏
i=1

(
4λiλr+1−i

(λi + λr+1−i)2

)2/t

+

t/2∏
i=1

(
(λi − λr+1−i)

2

(λi + λr+1−i)2

)2/t

≤ 2

t

t/2∑
i=1

4λiλr+1−i + (λi − λr+1−i)
2

(λi + λr+1−i)2
= 1,

and consequently

1 +

[
∥xt − x⋆∥A
∥x0 − x⋆∥A

]2/t
≤ 1 +

t/2∏
i=1

(
(λi − λr+1−i)

2

4λiλr+1−i

)2/t

≤
t/2∏
i=1

(
(λi + λr+1−i)

2

4λiλr+1−i

)2/t

.

In the case of odd t, we can use the generalized arithmetic-geometric mean inequality
with weights 1/t, 2/t, . . . , 2/t twice to write

(
4λt⋆λr+1−t⋆

(λt⋆ + λr+1−t⋆)
2

)1/t (t−1)/2∏
i=1

(
4λiλr+1−i

(λi + λr+1−i)2

)2/t

+

(
(λt⋆ − λr+1−t⋆)

2

(λt⋆ + λr+1−t⋆)
2

)1/t (t−1)/2∏
i=1

(
(λi − λr+1−i)

2

(λi + λr+1−i)2

)2/t

≤ 1

t

4λt⋆λr+1−t⋆ + (λt⋆ − λr+1−t⋆)
2

(λt⋆ + λr+1−t⋆)
2

+
2

t

(t−1)/2∑
i=1

4λiλr+1−i + (λi − λr+1−i)
2

(λi + λr+1−i)2
= 1,

30 E. KAMINETZ & R.J. WEBBER

and consequently

1 +

[
∥xt − x⋆∥A
∥x0 − x⋆∥A

]2/t
≤ 1 +

(
(λt⋆ − λr+1−t⋆)

2

4λt⋆λr+1−t⋆

)1/t (t−1)/2∏
i=1

(
(λi − λr+1−i)

2

4λiλr+1−i

)2/t

≤
(
(λt⋆ + λr+1−t⋆)

2

4λt⋆λr+1−t⋆

)1/t t/2∏
i=1

(
(λi + λr+1−i)

2

4λiλr+1−i

)2/t

.

Last, when r is even, we can use the arithmetic-geometric mean inequality two more
times to write(

1 +

[
∥xt − x⋆∥A
∥x0 − x⋆∥A

]2/t)t/2

≤ 1∏r
i=1 λi

r/2∏
i=1

(
λi + λr+1−i

2

)2

≤ κKap.

Similarly when r is odd, we can use the generalized arithmetic-geometric mean in-
equality two more times to obtain(

1 +

[
∥xt − x⋆∥A
∥x0 − x⋆∥A

]2/t)t/2

≤ 1∏r
i=1 λi

λ(r+1)/2

(r−1)/2∏
i=1

(
λi + λr+1−i

2

)2

≤ κKap.

We conclude by recalling that

2x =

∫ x

0

2dy ≤
∫ x

0

2dy

1− y2
=

∫ x

0

[
1

1− y
+

1

1 + y

]
dy

=

[
− log(1− y) + log(1 + y)

]y=x

y=0

= log

(
1 + x

1− x

)
and therefore e2x − 1 ≤ 2x

1−x . Therefore, we make the calculation

∥xt − x⋆∥A
∥x0 − x⋆∥A

≤
(
κ
2/t
Kap − 1

)t/2 ≤ (2 log(κKap)/t

1− log(κKap)/t

)t/2

=

(
2 log(κKap)

2t/3 + [t/3− log(κKap)]

)t/2

≤
(
3 log(κKap)

t

)t/2

on the event that t/3 ≥ log(κKap). On the other hand, if t/3 < log(κKap), the result
(3.2) holds vacuously. This completes the proof.

B.3. Proof of Proposition 3.6. Consider the matrix M = Â−1/2AÂ−1/2

which has eigendecomposition

M = QΛQ∗ where Λ = diag(λ1, . . . , λn).

We need to prove the mean square error bound

E

∣∣∣∣∣tr(logM)− 1

t

t∑
i=1

z∗
i (logM)zi

∣∣∣∣∣
2

≤ 4 log(κKap)

t
.

EVERYTHING IS VECCHIA 31

To that end, we introduce a complex Gaussian vector ω ∼ N (0, I) and set z =√
nω/∥ω∥. It suffices to show

(B.1) E[z∗(logM)z] = tr(logM) and Var[z∗(logM)z] ≤ 4 log(κKap)

when the Kaporin condition number is log(κKap) ≤ n.

We first observe that rotational invariance implies z
D
= Q∗z so

z∗(logM)z
D
= z∗(logΛ)z =

n∑
i=1

log(λi)|z(i)|2.

Then we check the stochastic trace estimator is unbiased.

(B.2) E

[
n∑

i=1

log(λi)|z(i)|2
]
=

n∑
i=1

log(λi)E|z(i)|2 =

n∑
i=1

log(λi) = tr(logM).

This confirms the first part of (B.2).
To bound the variance, we make a calculation using the Gaussian vector ω ∼

N (0, I).

E

∣∣∣∣∣
n∑

i=1

log(λi)|ω(i)|2
∣∣∣∣∣
2

−

∣∣∣∣∣
n∑

i=1

log(λi)

∣∣∣∣∣
2

= Var

[
n∑

i=1

log(λi)|ω(i)|2
]

=

n∑
i=1

(log λi)
2 Var

[
|ω(i)|2

]
=

n∑
i=1

(log λi)
2.

Here we have used the independence of ω(i) variables and the identity Var
[
|ω(i)|2

]
=

1, which holds for complex Gaussians. Since ω has independent length and direction,
we calculate

E

∣∣∣∣∣
n∑

i=1

log(λi)|ω(i)|2
∣∣∣∣∣
2

=
E∥ω∥4

n2
E

∣∣∣∣∣
n∑

i=1

log(λi)|z(i)|2
∣∣∣∣∣
2

=
n2 + n

n2
E

∣∣∣∣∣
n∑

i=1

log(λi)|z(i)|2
∣∣∣∣∣
2

,

where again we have used the fact that Var
[
|ω(i)|2

]
= 1. By rearrangement, it follows

E

∣∣∣∣∣
n∑

i=1

log(λi)|z(i)|2
∣∣∣∣∣
2

=
n

n+ 1

[
n∑

i=1

(log λi)
2 +

(
n∑

i=1

log(λi)

)2]
.

Subtracting the square mean (B.2) shows that

Var

[
n∑

i=1

log(λi)|z(i)|2
]

≤ n

n+ 1

[
1

n

n∑
i=1

(log λi)
2 −

(
n∑

i=1

log(λi)

)2]
=

1

n+ 1

n∑
i=1

(log λ′
i)

2,

where we have introduced λ′
i = λi/

∏n
j=1 λj and we observe that

∏n
i=1 log(λ

′
i) = 0

and 1
n

∑n
i=1 λ

′
i = κ

1/n
Kap. Then recall the standard identity that

1 + t+
1

2
t2 ≤ et and therefore (log u)2 ≤ 2(u− 1− log u).

32 E. KAMINETZ & R.J. WEBBER

We obtain the variance bound

Var

[
n∑

i=1

log(λi)|z(i)|2
]
≤ 2n

n+ 1

n∑
i=1

(
λ′
i − 1− log λ′

i

)
=

2n2

n+ 1

(
κ
1/n
Kap − 1

)
.

Last observe that t 7→ (et − 1)/t is strictly increasing for t > 0 and therefore

κ
1/n
Kap − 1

log(κKap)/n
≤ 2 if log(κKap) ≤ 1.42n.

This completes the proof.

	Motivation
	Notation
	Organization of paper

	Background and contributions
	Factored approximations based on the Cholesky decomposition
	Partial pivoted Cholesky
	Vecchia approximation

	Main theoretical result
	Implications

	Kaporin optimality theory and applications
	Direct linear system solves
	Iterative linear system solves
	Direct determinant calculation
	Iterative determinant calculation

	Optimization strategies
	Partial Cholesky + diagonal
	Adaptive search
	Adaptive sampling

	Adding to the sparsity pattern
	Nearest neighbor search
	Orthogonal matching pursuit

	Experiments and analysis
	Setup
	Preconditioned Conjugate Gradient
	Log-determinant estimation

	Comparison of Pivot Choosers
	How much does Vecchia help?

	References
	Appendix A. Proof of Kaporin optimality theory
	Sparse approximation characterization
	Volume and trace formulas
	Proof of Theorem 2.4

	Appendix B. Applications of the Kaporin condition number
	Proof of Proposition 3.6
	Proof of Theorem 3.7
	Proof of Theorem 3.8

